纳米材料生物效应的预测建模

Xiong Liu, Kaizhi Tang, S. Harper, B. Harper, J. Steevens, R. Xu
{"title":"纳米材料生物效应的预测建模","authors":"Xiong Liu, Kaizhi Tang, S. Harper, B. Harper, J. Steevens, R. Xu","doi":"10.1109/BIBMW.2012.6470254","DOIUrl":null,"url":null,"abstract":"Nanomaterial environmental impact (NEI) modeling is critical for industry and policymakers to assess the unintended biological effects (e.g. mortality, malformation, growth inhibition) resulting from the application of engineered nanomaterials. The scope of NEI modeling covers nanomaterial physical, chemical and manufacturing properties, exposure and study scenarios, environmental and ecosystem responses, biological responses, and their interactions. In this paper, we introduce a data mining approach to modeling the biological effects of nanomaterials. Data mining techniques can assist analysts in developing risk assessment models for nanomaterials. Using an experimental dataset on the toxicity of nanomaterials to embryonic zebrafish, we conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic end-points such as mortality, delayed development, and morpholigcal malformations and behavioral abnormalities. The results show that different biological effects have different modeling accuracy given the same set of algorithms and data. The results also show that the weighting scheme for different biological effects has a significant influence on modeling the overall biological effect. These results provide insights into the understanding and modeling of nanomaterial biological effects.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predictive modeling of nanomaterial biological effects\",\"authors\":\"Xiong Liu, Kaizhi Tang, S. Harper, B. Harper, J. Steevens, R. Xu\",\"doi\":\"10.1109/BIBMW.2012.6470254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomaterial environmental impact (NEI) modeling is critical for industry and policymakers to assess the unintended biological effects (e.g. mortality, malformation, growth inhibition) resulting from the application of engineered nanomaterials. The scope of NEI modeling covers nanomaterial physical, chemical and manufacturing properties, exposure and study scenarios, environmental and ecosystem responses, biological responses, and their interactions. In this paper, we introduce a data mining approach to modeling the biological effects of nanomaterials. Data mining techniques can assist analysts in developing risk assessment models for nanomaterials. Using an experimental dataset on the toxicity of nanomaterials to embryonic zebrafish, we conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic end-points such as mortality, delayed development, and morpholigcal malformations and behavioral abnormalities. The results show that different biological effects have different modeling accuracy given the same set of algorithms and data. The results also show that the weighting scheme for different biological effects has a significant influence on modeling the overall biological effect. These results provide insights into the understanding and modeling of nanomaterial biological effects.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2012.6470254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2012.6470254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

纳米材料环境影响(NEI)建模对于工业和政策制定者评估工程纳米材料应用产生的意外生物效应(如死亡率、畸形、生长抑制)至关重要。NEI建模的范围涵盖纳米材料的物理、化学和制造特性、暴露和研究场景、环境和生态系统反应、生物反应及其相互作用。在本文中,我们介绍了一种数据挖掘方法来模拟纳米材料的生物效应。数据挖掘技术可以帮助分析人员开发纳米材料的风险评估模型。利用纳米材料对胚胎斑马鱼毒性的实验数据集,我们进行了案例研究,以模拟纳米材料的总体效应/影响以及特定的毒性终点,如死亡、发育迟缓、形态畸形和行为异常。结果表明,在相同的算法和数据下,不同的生物效应具有不同的建模精度。结果还表明,不同生物效应的权重方案对整体生物效应的建模有显著影响。这些结果为纳米材料生物效应的理解和建模提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive modeling of nanomaterial biological effects
Nanomaterial environmental impact (NEI) modeling is critical for industry and policymakers to assess the unintended biological effects (e.g. mortality, malformation, growth inhibition) resulting from the application of engineered nanomaterials. The scope of NEI modeling covers nanomaterial physical, chemical and manufacturing properties, exposure and study scenarios, environmental and ecosystem responses, biological responses, and their interactions. In this paper, we introduce a data mining approach to modeling the biological effects of nanomaterials. Data mining techniques can assist analysts in developing risk assessment models for nanomaterials. Using an experimental dataset on the toxicity of nanomaterials to embryonic zebrafish, we conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic end-points such as mortality, delayed development, and morpholigcal malformations and behavioral abnormalities. The results show that different biological effects have different modeling accuracy given the same set of algorithms and data. The results also show that the weighting scheme for different biological effects has a significant influence on modeling the overall biological effect. These results provide insights into the understanding and modeling of nanomaterial biological effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1