具有统计性质的Lomax分布的新扩展及其在故障和服务时间数据集上的应用

Mohamed K. A. Refaie
{"title":"具有统计性质的Lomax分布的新扩展及其在故障和服务时间数据集上的应用","authors":"Mohamed K. A. Refaie","doi":"10.3844/JMSSP.2019.1.11","DOIUrl":null,"url":null,"abstract":"In this work, we introduce and study a new alternative Lomax model. The maximum likelihood method is used to estimate the unknown model parameters. We show empirically the importance and wide flexibility of the new model in modeling two types of failure times data sets. The new model is much better than the gamma Lomax, exponentiated Lomax, beta Lomax and Lomax models so the new model is a good alternative to these models.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"16 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Extension of the Lomax Distribution with Statistical Properties and Applications to Failure and Service Times Data Sets\",\"authors\":\"Mohamed K. A. Refaie\",\"doi\":\"10.3844/JMSSP.2019.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce and study a new alternative Lomax model. The maximum likelihood method is used to estimate the unknown model parameters. We show empirically the importance and wide flexibility of the new model in modeling two types of failure times data sets. The new model is much better than the gamma Lomax, exponentiated Lomax, beta Lomax and Lomax models so the new model is a good alternative to these models.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2019.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入并研究了一种新的替代Lomax模型。采用极大似然法对未知模型参数进行估计。我们通过经验证明了新模型在建模两种类型的故障时间数据集方面的重要性和广泛的灵活性。新模型比gamma Lomax,指数Lomax, beta Lomax和Lomax模型要好得多,因此新模型是这些模型的一个很好的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Extension of the Lomax Distribution with Statistical Properties and Applications to Failure and Service Times Data Sets
In this work, we introduce and study a new alternative Lomax model. The maximum likelihood method is used to estimate the unknown model parameters. We show empirically the importance and wide flexibility of the new model in modeling two types of failure times data sets. The new model is much better than the gamma Lomax, exponentiated Lomax, beta Lomax and Lomax models so the new model is a good alternative to these models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
期刊最新文献
Multivariate Option Pricing with Gaussian Mixture Distributions and Mixed Copulas Stochastic Model for Pricing Normal Bonds when Maturity Periods Cross Over to Pandemic Period Measurable Functional Calculi and Spectral Theory Elements of Formal Probabilistic Mechanics Chlodowsky Type (λ, q)-Bernstein Stancu Operator of Korovkin-Type Approximation Theorem of Rough I-Core of Triple Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1