{"title":"非均质离散动力学模型及其扩散极限","authors":"Ho-Youn Kim, Yong-Jung Kim, Hyuncheul Lim","doi":"10.3934/krm.2021023","DOIUrl":null,"url":null,"abstract":"A revertible discrete velocity kinetic model is introduced when the environment is spatially heterogeneous. It is proved that the parabolic scale singular limit of the model exists and satisfies a new heterogeneous diffusion equation that depends on the diffusivity and the turning frequency together. An energy functional is introduced which takes into account spatial heterogeneity in the velocity field. The monotonicity of the energy functional is the key to obtain uniform estimates needed for the weak convergence proof. The Div-Curl lemma completes the strong convergence proof.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heterogeneous discrete kinetic model and its diffusion limit\",\"authors\":\"Ho-Youn Kim, Yong-Jung Kim, Hyuncheul Lim\",\"doi\":\"10.3934/krm.2021023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A revertible discrete velocity kinetic model is introduced when the environment is spatially heterogeneous. It is proved that the parabolic scale singular limit of the model exists and satisfies a new heterogeneous diffusion equation that depends on the diffusivity and the turning frequency together. An energy functional is introduced which takes into account spatial heterogeneity in the velocity field. The monotonicity of the energy functional is the key to obtain uniform estimates needed for the weak convergence proof. The Div-Curl lemma completes the strong convergence proof.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2021023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2021023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Heterogeneous discrete kinetic model and its diffusion limit
A revertible discrete velocity kinetic model is introduced when the environment is spatially heterogeneous. It is proved that the parabolic scale singular limit of the model exists and satisfies a new heterogeneous diffusion equation that depends on the diffusivity and the turning frequency together. An energy functional is introduced which takes into account spatial heterogeneity in the velocity field. The monotonicity of the energy functional is the key to obtain uniform estimates needed for the weak convergence proof. The Div-Curl lemma completes the strong convergence proof.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.