{"title":"了解加拿大大草原干旱发生和加剧的驱动因素:来自可解释人工智能(XAI)的见解","authors":"Jacob Mardian, C. Champagne, B. Bonsal, A. Berg","doi":"10.1175/jhm-d-23-0036.1","DOIUrl":null,"url":null,"abstract":"\nRecent advances in Artificial Intelligence (AI) and Explainable AI (XAI) have created opportunities to better predict and understand drought processes. This study uses a machine learning approach for understanding the drivers of drought severity and extent in the Canadian Prairies from 2005 to 2019 using climate and satellite data. The model is trained on the Canadian Drought Monitor (CDM), an extensive dataset produced by expert analysis of drought impacts across various sectors that enables a more comprehensive understanding of drought. Shapley Additive Explanation (SHAP) is used to understand model predictions during emerging or worsening drought conditions, providing insight into the key determinants of drought. The results demonstrate the importance of capturing spatiotemporal autocorrelation structures for accurate drought characterization and elucidates the drought time scales and thresholds that optimally separate each CDM severity category. In general, there is a positive relationship between the severity of drought and the time scale of the anomalies. However, high severity droughts are also more complex and driven by a multitude of factors. It was found that satellite-based Evaporative Stress Index (ESI), soil moisture, and groundwater were effective predictors of drought onset and intensification. Similarly, anomalous phases of large-scale atmosphere-ocean dynamics exhibit teleconnections with Prairie drought. Overall, this investigation provides a better understanding of the physical mechanisms responsible for drought in the Prairies, provides data-driven thresholds for estimating drought severity that could improve future drought assessments, and offers a set of early warning indicators that may be useful for drought adaptation and mitigation.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"10 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Drivers of Drought Onset and Intensification in the Canadian Prairies: Insights from Explainable Artificial Intelligence (XAI)\",\"authors\":\"Jacob Mardian, C. Champagne, B. Bonsal, A. Berg\",\"doi\":\"10.1175/jhm-d-23-0036.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nRecent advances in Artificial Intelligence (AI) and Explainable AI (XAI) have created opportunities to better predict and understand drought processes. This study uses a machine learning approach for understanding the drivers of drought severity and extent in the Canadian Prairies from 2005 to 2019 using climate and satellite data. The model is trained on the Canadian Drought Monitor (CDM), an extensive dataset produced by expert analysis of drought impacts across various sectors that enables a more comprehensive understanding of drought. Shapley Additive Explanation (SHAP) is used to understand model predictions during emerging or worsening drought conditions, providing insight into the key determinants of drought. The results demonstrate the importance of capturing spatiotemporal autocorrelation structures for accurate drought characterization and elucidates the drought time scales and thresholds that optimally separate each CDM severity category. In general, there is a positive relationship between the severity of drought and the time scale of the anomalies. However, high severity droughts are also more complex and driven by a multitude of factors. It was found that satellite-based Evaporative Stress Index (ESI), soil moisture, and groundwater were effective predictors of drought onset and intensification. Similarly, anomalous phases of large-scale atmosphere-ocean dynamics exhibit teleconnections with Prairie drought. Overall, this investigation provides a better understanding of the physical mechanisms responsible for drought in the Prairies, provides data-driven thresholds for estimating drought severity that could improve future drought assessments, and offers a set of early warning indicators that may be useful for drought adaptation and mitigation.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0036.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0036.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Understanding the Drivers of Drought Onset and Intensification in the Canadian Prairies: Insights from Explainable Artificial Intelligence (XAI)
Recent advances in Artificial Intelligence (AI) and Explainable AI (XAI) have created opportunities to better predict and understand drought processes. This study uses a machine learning approach for understanding the drivers of drought severity and extent in the Canadian Prairies from 2005 to 2019 using climate and satellite data. The model is trained on the Canadian Drought Monitor (CDM), an extensive dataset produced by expert analysis of drought impacts across various sectors that enables a more comprehensive understanding of drought. Shapley Additive Explanation (SHAP) is used to understand model predictions during emerging or worsening drought conditions, providing insight into the key determinants of drought. The results demonstrate the importance of capturing spatiotemporal autocorrelation structures for accurate drought characterization and elucidates the drought time scales and thresholds that optimally separate each CDM severity category. In general, there is a positive relationship between the severity of drought and the time scale of the anomalies. However, high severity droughts are also more complex and driven by a multitude of factors. It was found that satellite-based Evaporative Stress Index (ESI), soil moisture, and groundwater were effective predictors of drought onset and intensification. Similarly, anomalous phases of large-scale atmosphere-ocean dynamics exhibit teleconnections with Prairie drought. Overall, this investigation provides a better understanding of the physical mechanisms responsible for drought in the Prairies, provides data-driven thresholds for estimating drought severity that could improve future drought assessments, and offers a set of early warning indicators that may be useful for drought adaptation and mitigation.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.