张量变量时间序列数据的有限混合隐马尔科夫模型

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY Advances in Data Analysis and Classification Pub Date : 2023-04-29 DOI:10.1007/s11634-023-00540-y
Abdullah Asilkalkan, Xuwen Zhu, Shuchismita Sarkar
{"title":"张量变量时间序列数据的有限混合隐马尔科夫模型","authors":"Abdullah Asilkalkan,&nbsp;Xuwen Zhu,&nbsp;Shuchismita Sarkar","doi":"10.1007/s11634-023-00540-y","DOIUrl":null,"url":null,"abstract":"<div><p>The need to model data with higher dimensions, such as a tensor-variate framework where each observation is considered a three-dimensional object, increases due to rapid improvements in computational power and data storage capabilities. In this study, a finite mixture of hidden Markov model for tensor-variate time series data is developed. Simulation studies demonstrate high classification accuracy for both cluster and regime IDs. To further validate the usefulness of the proposed model, it is applied to real-life data with promising results.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 3","pages":"545 - 562"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite mixture of hidden Markov models for tensor-variate time series data\",\"authors\":\"Abdullah Asilkalkan,&nbsp;Xuwen Zhu,&nbsp;Shuchismita Sarkar\",\"doi\":\"10.1007/s11634-023-00540-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The need to model data with higher dimensions, such as a tensor-variate framework where each observation is considered a three-dimensional object, increases due to rapid improvements in computational power and data storage capabilities. In this study, a finite mixture of hidden Markov model for tensor-variate time series data is developed. Simulation studies demonstrate high classification accuracy for both cluster and regime IDs. To further validate the usefulness of the proposed model, it is applied to real-life data with promising results.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"18 3\",\"pages\":\"545 - 562\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-023-00540-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00540-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

随着计算能力和数据存储能力的迅速提高,对高维度数据建模的需求也在增加,例如在张量变量框架中,每个观测值都被视为一个三维对象。本研究为张量变量时间序列数据建立了有限混合隐马尔科夫模型。模拟研究表明,该模型对集群和系统 ID 的分类准确率都很高。为了进一步验证所提模型的实用性,我们将其应用于现实生活数据,并取得了可喜的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite mixture of hidden Markov models for tensor-variate time series data

The need to model data with higher dimensions, such as a tensor-variate framework where each observation is considered a three-dimensional object, increases due to rapid improvements in computational power and data storage capabilities. In this study, a finite mixture of hidden Markov model for tensor-variate time series data is developed. Simulation studies demonstrate high classification accuracy for both cluster and regime IDs. To further validate the usefulness of the proposed model, it is applied to real-life data with promising results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
期刊最新文献
Editorial for ADAC issue 4 of volume 18 (2024) Special issue on “New methodologies in clustering and classification for complex and/or big data” Marginal models with individual-specific effects for the analysis of longitudinal bipartite networks Using Bagging to improve clustering methods in the context of three-dimensional shapes The chiPower transformation: a valid alternative to logratio transformations in compositional data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1