无标签MRI数据中脑肿瘤的语义分割

Leon Weninger, Imke Krauhausen, D. Merhof
{"title":"无标签MRI数据中脑肿瘤的语义分割","authors":"Leon Weninger, Imke Krauhausen, D. Merhof","doi":"10.2312/vcbm.20191230","DOIUrl":null,"url":null,"abstract":"Brain MR images are one of the most important instruments for diagnosing neurological disorders such as tumors, infections or trauma. In particular, grade I-IV brain tumors are a well-studied subject for supervised deep learning approaches. However, for a clinical use of these approaches, a very large annotated database that covers all of the occurring variance is necessary. As MR scanners are not quantitative, it is unclear how good supervised approaches, trained on a specific database, will actually perform on a new set of images that may stem from a yet other scanner. We propose a new method for brain tumor segmentation, that can not only identify abnormal regions, but can also delineate brain tumors into three characteristic radiological areas: The edema, the enhancing core, and the non-enhancing and necrotic tissue. Our concept is based on FLAIR and T1CE MRI sequences, where abnormalities are detected with a variational autoencoder trained on healthy examples. The detected areas are finally postprocessed via Gaussian Mixture Models and finally classified according to the three defined labels. We show results on the BraTS2018 dataset and compare these to previously published unsupervised segmentation results as well as to the results of the BraTS challenge 2018. Our developed unsupervised anomaly detection approach is on par with previously published methods. Meanwhile, the semantic segmentation a new and unique model shows encouraging results.","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"80 1","pages":"45-49"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Segmentation of Brain Tumors in MRI Data Without any Labels\",\"authors\":\"Leon Weninger, Imke Krauhausen, D. Merhof\",\"doi\":\"10.2312/vcbm.20191230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain MR images are one of the most important instruments for diagnosing neurological disorders such as tumors, infections or trauma. In particular, grade I-IV brain tumors are a well-studied subject for supervised deep learning approaches. However, for a clinical use of these approaches, a very large annotated database that covers all of the occurring variance is necessary. As MR scanners are not quantitative, it is unclear how good supervised approaches, trained on a specific database, will actually perform on a new set of images that may stem from a yet other scanner. We propose a new method for brain tumor segmentation, that can not only identify abnormal regions, but can also delineate brain tumors into three characteristic radiological areas: The edema, the enhancing core, and the non-enhancing and necrotic tissue. Our concept is based on FLAIR and T1CE MRI sequences, where abnormalities are detected with a variational autoencoder trained on healthy examples. The detected areas are finally postprocessed via Gaussian Mixture Models and finally classified according to the three defined labels. We show results on the BraTS2018 dataset and compare these to previously published unsupervised segmentation results as well as to the results of the BraTS challenge 2018. Our developed unsupervised anomaly detection approach is on par with previously published methods. Meanwhile, the semantic segmentation a new and unique model shows encouraging results.\",\"PeriodicalId\":88872,\"journal\":{\"name\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"volume\":\"80 1\",\"pages\":\"45-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/vcbm.20191230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20191230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑磁共振成像是诊断神经系统疾病(如肿瘤、感染或创伤)最重要的工具之一。特别是,对于监督深度学习方法来说,I-IV级脑肿瘤是一个得到充分研究的主题。然而,对于这些方法的临床应用,一个非常大的注释数据库是必要的,它涵盖了所有发生的差异。由于磁共振扫描仪不是定量的,因此尚不清楚在特定数据库上训练的监督方法在处理可能来自其他扫描仪的一组新图像时的效果如何。我们提出了一种新的脑肿瘤分割方法,该方法不仅可以识别异常区域,而且可以将脑肿瘤划分为三个特征的放射学区域:水肿、增强核心、非增强和坏死组织。我们的概念是基于FLAIR和T1CE MRI序列,其中使用在健康样本上训练的变分自编码器检测异常。最后通过高斯混合模型对检测到的区域进行后处理,最后根据三个定义的标签进行分类。我们展示了BraTS2018数据集上的结果,并将这些结果与之前发布的无监督分割结果以及BraTS挑战2018的结果进行了比较。我们开发的无监督异常检测方法与以前发表的方法相当。同时,一种新的独特的语义分割模型也取得了令人鼓舞的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Segmentation of Brain Tumors in MRI Data Without any Labels
Brain MR images are one of the most important instruments for diagnosing neurological disorders such as tumors, infections or trauma. In particular, grade I-IV brain tumors are a well-studied subject for supervised deep learning approaches. However, for a clinical use of these approaches, a very large annotated database that covers all of the occurring variance is necessary. As MR scanners are not quantitative, it is unclear how good supervised approaches, trained on a specific database, will actually perform on a new set of images that may stem from a yet other scanner. We propose a new method for brain tumor segmentation, that can not only identify abnormal regions, but can also delineate brain tumors into three characteristic radiological areas: The edema, the enhancing core, and the non-enhancing and necrotic tissue. Our concept is based on FLAIR and T1CE MRI sequences, where abnormalities are detected with a variational autoencoder trained on healthy examples. The detected areas are finally postprocessed via Gaussian Mixture Models and finally classified according to the three defined labels. We show results on the BraTS2018 dataset and compare these to previously published unsupervised segmentation results as well as to the results of the BraTS challenge 2018. Our developed unsupervised anomaly detection approach is on par with previously published methods. Meanwhile, the semantic segmentation a new and unique model shows encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1