冲击标准Cu, Ag, Ir, Pt,压力范围广

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Matter and Radiation at Extremes Pub Date : 2023-05-16 DOI:10.1063/5.0124555
L. Burakovsky, D. Preston, S. Ramsey, C. Starrett, R. Baty
{"title":"冲击标准Cu, Ag, Ir, Pt,压力范围广","authors":"L. Burakovsky, D. Preston, S. Ramsey, C. Starrett, R. Baty","doi":"10.1063/5.0124555","DOIUrl":null,"url":null,"abstract":"Although they are polymorphic (multiphase) materials, both copper and silver are reliable Hugoniot standards, and thus it is necessary to establish an accurate analytic model of their principal Hugoniots. Here we present analytic forms of their principal Hugoniots, as well as those of iridium and platinum, two “pusher” standards for shock-ramp experiments, over a wide range of pressures. They are based on our new analytic model of the principal Hugoniot [Burakovsky et al., J. Appl. Phys. 132, 215109 (2022)]. Comparison of the four Hugoniots with experimental and independent theoretical data (such data exist to very high pressures for both copper and silver) demonstrates excellent agreement. Hence, the new model for copper and silver can be considered as providing the corresponding Hugoniot standards over a wide pressure range. We also suggest an approach for calculating the Grüneisen parameter along the Hugoniot and apply it to copper as a prototype, and our results appear to be in good agreement with the available data.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"40 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock standards Cu, Ag, Ir, and Pt in a wide pressure range\",\"authors\":\"L. Burakovsky, D. Preston, S. Ramsey, C. Starrett, R. Baty\",\"doi\":\"10.1063/5.0124555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although they are polymorphic (multiphase) materials, both copper and silver are reliable Hugoniot standards, and thus it is necessary to establish an accurate analytic model of their principal Hugoniots. Here we present analytic forms of their principal Hugoniots, as well as those of iridium and platinum, two “pusher” standards for shock-ramp experiments, over a wide range of pressures. They are based on our new analytic model of the principal Hugoniot [Burakovsky et al., J. Appl. Phys. 132, 215109 (2022)]. Comparison of the four Hugoniots with experimental and independent theoretical data (such data exist to very high pressures for both copper and silver) demonstrates excellent agreement. Hence, the new model for copper and silver can be considered as providing the corresponding Hugoniot standards over a wide pressure range. We also suggest an approach for calculating the Grüneisen parameter along the Hugoniot and apply it to copper as a prototype, and our results appear to be in good agreement with the available data.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0124555\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0124555","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然铜和银都是多晶(多相)材料,但它们都是可靠的Hugoniot标准,因此有必要建立其主Hugoniot的精确解析模型。在这里,我们给出了他们的主要Hugoniots的解析形式,以及铱和铂的解析形式,这是两个用于冲击斜坡实验的“推手”标准,在很宽的压力范围内。它们是基于我们的主要Hugoniot的新分析模型[Burakovsky et al., J. appll]。物理学报,2002,22(2):559 - 564。将四个Hugoniots与实验数据和独立理论数据(铜和银都存在非常高的压力)进行比较,证明了非常好的一致性。因此,铜和银的新模型可以被认为是在很宽的压力范围内提供相应的Hugoniot标准。我们还提出了一种沿Hugoniot计算grisen参数的方法,并将其应用于铜作为原型,我们的结果似乎与现有数据很好地一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shock standards Cu, Ag, Ir, and Pt in a wide pressure range
Although they are polymorphic (multiphase) materials, both copper and silver are reliable Hugoniot standards, and thus it is necessary to establish an accurate analytic model of their principal Hugoniots. Here we present analytic forms of their principal Hugoniots, as well as those of iridium and platinum, two “pusher” standards for shock-ramp experiments, over a wide range of pressures. They are based on our new analytic model of the principal Hugoniot [Burakovsky et al., J. Appl. Phys. 132, 215109 (2022)]. Comparison of the four Hugoniots with experimental and independent theoretical data (such data exist to very high pressures for both copper and silver) demonstrates excellent agreement. Hence, the new model for copper and silver can be considered as providing the corresponding Hugoniot standards over a wide pressure range. We also suggest an approach for calculating the Grüneisen parameter along the Hugoniot and apply it to copper as a prototype, and our results appear to be in good agreement with the available data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
期刊最新文献
Compact laser wakefield acceleration toward high energy with micro-plasma parabola Hollow ion atomic structure and X-ray emission in dense hot plasmas Exotic compounds of monovalent calcium synthesized at high pressure Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1