{"title":"AISI 316L钢车削过程中刀具几何形状影响的实验研究与数值预测","authors":"A. Benmeddour","doi":"10.3311/ppme.16844","DOIUrl":null,"url":null,"abstract":"In this work, a numerical and an experimental study aimed to gain a better understanding of the impact of tool geometry such as (rake angle and cutting edge radius) on the temperature distribution and residual stresses in machining surface of AISI 316L stainless steel have been presented. To evaluate the experimental results, various experimental equipment was used, such as a conventional lathe to carry out the machining operations, the cutting force was measured using a Kistler dynamometer and X-ray diffraction technique was employed for determination of the residual stresses distribution on the machined surfaces. In addition, A thermo-mechanically coupled finite element (FE) analysis for cutting process is developed through ABAQUS code to predict the temperature distribution and residual stresses using an Arbitrary Lagrangian-Eulerian (ALE) approach. An inverse identification method has been used to determine the adequate Johnson-Cook (JC) material model parameters to obtain a good correlation between the cutting force measurements and numerical one. The FE model was then validated by comparison of the numerical results of residual stresses with experimental measurements for different tool geometries, which revealed a reasonable agreement.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Investigation and Numerical Prediction of the Effects of Cutting Tool Geometry During Turning of AISI 316L Steel\",\"authors\":\"A. Benmeddour\",\"doi\":\"10.3311/ppme.16844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a numerical and an experimental study aimed to gain a better understanding of the impact of tool geometry such as (rake angle and cutting edge radius) on the temperature distribution and residual stresses in machining surface of AISI 316L stainless steel have been presented. To evaluate the experimental results, various experimental equipment was used, such as a conventional lathe to carry out the machining operations, the cutting force was measured using a Kistler dynamometer and X-ray diffraction technique was employed for determination of the residual stresses distribution on the machined surfaces. In addition, A thermo-mechanically coupled finite element (FE) analysis for cutting process is developed through ABAQUS code to predict the temperature distribution and residual stresses using an Arbitrary Lagrangian-Eulerian (ALE) approach. An inverse identification method has been used to determine the adequate Johnson-Cook (JC) material model parameters to obtain a good correlation between the cutting force measurements and numerical one. The FE model was then validated by comparison of the numerical results of residual stresses with experimental measurements for different tool geometries, which revealed a reasonable agreement.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.16844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.16844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental Investigation and Numerical Prediction of the Effects of Cutting Tool Geometry During Turning of AISI 316L Steel
In this work, a numerical and an experimental study aimed to gain a better understanding of the impact of tool geometry such as (rake angle and cutting edge radius) on the temperature distribution and residual stresses in machining surface of AISI 316L stainless steel have been presented. To evaluate the experimental results, various experimental equipment was used, such as a conventional lathe to carry out the machining operations, the cutting force was measured using a Kistler dynamometer and X-ray diffraction technique was employed for determination of the residual stresses distribution on the machined surfaces. In addition, A thermo-mechanically coupled finite element (FE) analysis for cutting process is developed through ABAQUS code to predict the temperature distribution and residual stresses using an Arbitrary Lagrangian-Eulerian (ALE) approach. An inverse identification method has been used to determine the adequate Johnson-Cook (JC) material model parameters to obtain a good correlation between the cutting force measurements and numerical one. The FE model was then validated by comparison of the numerical results of residual stresses with experimental measurements for different tool geometries, which revealed a reasonable agreement.
期刊介绍:
Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.