等离子体光学:高功率相干光产生和操作的前景

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Matter and Radiation at Extremes Pub Date : 2023-03-01 DOI:10.1063/5.0138996
C. Riconda, S. Weber
{"title":"等离子体光学:高功率相干光产生和操作的前景","authors":"C. Riconda, S. Weber","doi":"10.1063/5.0138996","DOIUrl":null,"url":null,"abstract":"Over the last two decades, the importance of fully ionized plasmas for the controlled manipulation of high-power coherent light has increased considerably. Many ideas have been put forward on how to control or change the properties of laser pulses such as their frequency, spectrum, intensity, and polarization. The corresponding interaction with a plasma can take place either in a self-organizing way or by prior tailoring. Considerable work has been done in theoretical studies and in simulations, but at present there is a backlog of demand for experimental verification and the associated detailed characterization of plasma-optical elements. Existing proof-of-principle experiments need to be pushed to higher power levels. There is little doubt that plasmas have huge potential for future use in high-power optics. This introduction to the special issue of Matter and Radiation at Extremes devoted to plasma optics sets the framework, gives a short historical overview, and briefly describes the various articles in this collection.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"7 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plasma optics: A perspective for high-power coherent light generation and manipulation\",\"authors\":\"C. Riconda, S. Weber\",\"doi\":\"10.1063/5.0138996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last two decades, the importance of fully ionized plasmas for the controlled manipulation of high-power coherent light has increased considerably. Many ideas have been put forward on how to control or change the properties of laser pulses such as their frequency, spectrum, intensity, and polarization. The corresponding interaction with a plasma can take place either in a self-organizing way or by prior tailoring. Considerable work has been done in theoretical studies and in simulations, but at present there is a backlog of demand for experimental verification and the associated detailed characterization of plasma-optical elements. Existing proof-of-principle experiments need to be pushed to higher power levels. There is little doubt that plasmas have huge potential for future use in high-power optics. This introduction to the special issue of Matter and Radiation at Extremes devoted to plasma optics sets the framework, gives a short historical overview, and briefly describes the various articles in this collection.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0138996\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0138996","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在过去的二十年中,完全电离等离子体对高功率相干光的控制操作的重要性大大增加。关于如何控制或改变激光脉冲的频率、频谱、强度和偏振等特性,人们提出了许多想法。与等离子体的相应相互作用既可以以自组织的方式发生,也可以通过预先剪裁的方式发生。在理论研究和模拟方面已经做了大量的工作,但目前对等离子体光学元件的实验验证和相关详细表征的需求积压。现有的原理验证实验需要推进到更高的功率水平。毫无疑问,等离子体在未来的高功率光学中有着巨大的应用潜力。这篇介绍物质和辐射在极端情况下的特别问题,致力于等离子体光学设置了框架,给出了一个简短的历史概述,并简要地描述了这个集合中的各种文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma optics: A perspective for high-power coherent light generation and manipulation
Over the last two decades, the importance of fully ionized plasmas for the controlled manipulation of high-power coherent light has increased considerably. Many ideas have been put forward on how to control or change the properties of laser pulses such as their frequency, spectrum, intensity, and polarization. The corresponding interaction with a plasma can take place either in a self-organizing way or by prior tailoring. Considerable work has been done in theoretical studies and in simulations, but at present there is a backlog of demand for experimental verification and the associated detailed characterization of plasma-optical elements. Existing proof-of-principle experiments need to be pushed to higher power levels. There is little doubt that plasmas have huge potential for future use in high-power optics. This introduction to the special issue of Matter and Radiation at Extremes devoted to plasma optics sets the framework, gives a short historical overview, and briefly describes the various articles in this collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
期刊最新文献
Compact laser wakefield acceleration toward high energy with micro-plasma parabola Hollow ion atomic structure and X-ray emission in dense hot plasmas Exotic compounds of monovalent calcium synthesized at high pressure Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1