{"title":"mooc的内容类型、分布和可读性","authors":"M. Carlon, Nopphon Keerativoranan, J. Cross","doi":"10.1145/3386527.3405950","DOIUrl":null,"url":null,"abstract":"Massive open online courses (MOOCs) provide a great opportunity to use multiple means of information representation through a mixture of various media such as text, graphics, and video, among others. However, most research on MOOCs focused on learning analytics and not much attention is given to content analysis. We gathered all text corpora and video transcripts of selected MOOCs using a web crawler and looked at word counts, clustered by distribution, and measured readability of the crawled data. Analyzing content distribution allows for a comparison of MOOCs regardless of topics, thus giving us an idea of what most course developers might think is ideal in terms of content distribution. This comparison along with readability analysis can be useful for course pre-run quality assessment and gauging content sufficiency.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Content Type Distribution and Readability of MOOCs\",\"authors\":\"M. Carlon, Nopphon Keerativoranan, J. Cross\",\"doi\":\"10.1145/3386527.3405950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive open online courses (MOOCs) provide a great opportunity to use multiple means of information representation through a mixture of various media such as text, graphics, and video, among others. However, most research on MOOCs focused on learning analytics and not much attention is given to content analysis. We gathered all text corpora and video transcripts of selected MOOCs using a web crawler and looked at word counts, clustered by distribution, and measured readability of the crawled data. Analyzing content distribution allows for a comparison of MOOCs regardless of topics, thus giving us an idea of what most course developers might think is ideal in terms of content distribution. This comparison along with readability analysis can be useful for course pre-run quality assessment and gauging content sufficiency.\",\"PeriodicalId\":20608,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386527.3405950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3405950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content Type Distribution and Readability of MOOCs
Massive open online courses (MOOCs) provide a great opportunity to use multiple means of information representation through a mixture of various media such as text, graphics, and video, among others. However, most research on MOOCs focused on learning analytics and not much attention is given to content analysis. We gathered all text corpora and video transcripts of selected MOOCs using a web crawler and looked at word counts, clustered by distribution, and measured readability of the crawled data. Analyzing content distribution allows for a comparison of MOOCs regardless of topics, thus giving us an idea of what most course developers might think is ideal in terms of content distribution. This comparison along with readability analysis can be useful for course pre-run quality assessment and gauging content sufficiency.