{"title":"基于注意力的深度学习模型在社交网络中检测假新闻","authors":"S. Ramya, R. Eswari","doi":"10.4018/ijcini.295809","DOIUrl":null,"url":null,"abstract":"Automatic fake news detection is a challenging problem in deception detection. While evaluating the performance of deep learning-based models, if all the models are giving higher accuracy on a test dataset, it will make it harder to validate the performance of the deep learning models under consideration. So, we will need a complex problem to validate the performance of a deep learning model. LIAR is one such complex, much resent, labeled benchmark dataset which is publicly available for doing research on fake news detection to model statistical and machine learning approaches to combating fake news. In this work, a novel fake news detection system is implemented using Deep Neural Network models such as CNN, LSTM, BiLSTM, and the performance of their attention mechanism is evaluated by analyzing their performance in terms of Accuracy, Precision, Recall, and F1-score with training, validation and test datasets of LIAR.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Attention-Based Deep Learning Models for Detection of Fake News in Social Networks\",\"authors\":\"S. Ramya, R. Eswari\",\"doi\":\"10.4018/ijcini.295809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic fake news detection is a challenging problem in deception detection. While evaluating the performance of deep learning-based models, if all the models are giving higher accuracy on a test dataset, it will make it harder to validate the performance of the deep learning models under consideration. So, we will need a complex problem to validate the performance of a deep learning model. LIAR is one such complex, much resent, labeled benchmark dataset which is publicly available for doing research on fake news detection to model statistical and machine learning approaches to combating fake news. In this work, a novel fake news detection system is implemented using Deep Neural Network models such as CNN, LSTM, BiLSTM, and the performance of their attention mechanism is evaluated by analyzing their performance in terms of Accuracy, Precision, Recall, and F1-score with training, validation and test datasets of LIAR.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.295809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.295809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attention-Based Deep Learning Models for Detection of Fake News in Social Networks
Automatic fake news detection is a challenging problem in deception detection. While evaluating the performance of deep learning-based models, if all the models are giving higher accuracy on a test dataset, it will make it harder to validate the performance of the deep learning models under consideration. So, we will need a complex problem to validate the performance of a deep learning model. LIAR is one such complex, much resent, labeled benchmark dataset which is publicly available for doing research on fake news detection to model statistical and machine learning approaches to combating fake news. In this work, a novel fake news detection system is implemented using Deep Neural Network models such as CNN, LSTM, BiLSTM, and the performance of their attention mechanism is evaluated by analyzing their performance in terms of Accuracy, Precision, Recall, and F1-score with training, validation and test datasets of LIAR.