基于改进遗传算法的非线性车轮里程计模型标定

Máté Fazekas, B. Németh, P. Gáspár
{"title":"基于改进遗传算法的非线性车轮里程计模型标定","authors":"Máté Fazekas, B. Németh, P. Gáspár","doi":"10.5220/0011275700003271","DOIUrl":null,"url":null,"abstract":": To guarantee the required motion estimation accuracy for an autonomous vehicle, the integration of the wheel encoder measurements is an adequate choice besides the generally applied GNSS, inertial and visual-odometry methods. Wheel odometry is a robust and cost-effective technique, but the required calibration of the nonlinear odometry model in the presence of noise remains an open problem in the context of autonomous vehicles. The core problem is that due to the nonlinear behavior of the model, the identified parameters will be biased even with Gaussian-type measurement noises. The presented method operates with genetic algorithms and utilizes two novel improvements: compensation of the state initialization of the model inside the estimation process, and equilibration of the parameter estimation by an adaptive weighting technique. With these innovations the distortion effects are mitigated and unbiased model calibration can be obtained even when several local minimums exist. The performance of the developed algorithm and the accuracy of parameter estimation are demonstrated with detailed validation and test with a real vehicle.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"3 1","pages":"640-648"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of the Nonlinear Wheel Odometry Model with an Improved Genetic Algorithm Architecture\",\"authors\":\"Máté Fazekas, B. Németh, P. Gáspár\",\"doi\":\"10.5220/0011275700003271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": To guarantee the required motion estimation accuracy for an autonomous vehicle, the integration of the wheel encoder measurements is an adequate choice besides the generally applied GNSS, inertial and visual-odometry methods. Wheel odometry is a robust and cost-effective technique, but the required calibration of the nonlinear odometry model in the presence of noise remains an open problem in the context of autonomous vehicles. The core problem is that due to the nonlinear behavior of the model, the identified parameters will be biased even with Gaussian-type measurement noises. The presented method operates with genetic algorithms and utilizes two novel improvements: compensation of the state initialization of the model inside the estimation process, and equilibration of the parameter estimation by an adaptive weighting technique. With these innovations the distortion effects are mitigated and unbiased model calibration can be obtained even when several local minimums exist. The performance of the developed algorithm and the accuracy of parameter estimation are demonstrated with detailed validation and test with a real vehicle.\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"3 1\",\"pages\":\"640-648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011275700003271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011275700003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:为了保证自动驾驶汽车所需的运动估计精度,除了常用的GNSS、惯性和视觉里程计方法外,车轮编码器测量的集成是一种适当的选择。车轮里程计是一种鲁棒且经济高效的技术,但在自动驾驶汽车中,存在噪声的非线性里程计模型的校准仍然是一个有待解决的问题。核心问题是,由于模型的非线性特性,即使存在高斯型测量噪声,识别参数也会产生偏差。该方法采用遗传算法进行操作,并利用了两种新的改进:一是在估计过程中补偿模型的状态初始化,二是采用自适应加权技术对参数估计进行平衡。通过这些创新,可以减轻失真效应,即使存在多个局部最小值,也可以获得无偏模型校准。通过详细的验证和实车试验,验证了该算法的性能和参数估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration of the Nonlinear Wheel Odometry Model with an Improved Genetic Algorithm Architecture
: To guarantee the required motion estimation accuracy for an autonomous vehicle, the integration of the wheel encoder measurements is an adequate choice besides the generally applied GNSS, inertial and visual-odometry methods. Wheel odometry is a robust and cost-effective technique, but the required calibration of the nonlinear odometry model in the presence of noise remains an open problem in the context of autonomous vehicles. The core problem is that due to the nonlinear behavior of the model, the identified parameters will be biased even with Gaussian-type measurement noises. The presented method operates with genetic algorithms and utilizes two novel improvements: compensation of the state initialization of the model inside the estimation process, and equilibration of the parameter estimation by an adaptive weighting technique. With these innovations the distortion effects are mitigated and unbiased model calibration can be obtained even when several local minimums exist. The performance of the developed algorithm and the accuracy of parameter estimation are demonstrated with detailed validation and test with a real vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informatics in Control, Automation and Robotics: 18th International Conference, ICINCO 2021 Lieusaint - Paris, France, July 6–8, 2021, Revised Selected Papers A Digital Twin Setup for Safety-aware Optimization of a Cyber-physical System Segmenting Maps by Analyzing Free and Occupied Regions with Voronoi Diagrams Efficient Verification of CPA Lyapunov Functions Open-loop Control of a Soft Arm in Throwing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1