Xiaowen Hu, David Zhao, Herbert Jordan, Bernhard Scholz
{"title":"通过去专门化关系实现对Datalog的高效解释器","authors":"Xiaowen Hu, David Zhao, Herbert Jordan, Bernhard Scholz","doi":"10.1145/3453483.3454070","DOIUrl":null,"url":null,"abstract":"Datalog is becoming increasingly popular as a standard tool for a variety of use cases. Modern Datalog engines can achieve high performance by specializing data structures for relational operations. For example, the Datalog engine Soufflé achieves high performance with a synthesizer that specializes data structures for relations. However, the synthesizer cannot always be deployed, and a fast interpreter is required. This work introduces the design and implementation of the Soufflé Tree Interpreter (STI). Key for the performance of the STI is the support for fast operations on relations. We obtain fast operations by de-specializing data structures so that they can work in a virtual execution environment. Our new interpreter achieves a competitive performance slowdown between 1.32 and 5.67× when compared to synthesized code. If compile time overheads of the synthesizer are also considered, the interpreter can be 6.46× faster on average for the first run.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient interpreter for Datalog by de-specializing relations\",\"authors\":\"Xiaowen Hu, David Zhao, Herbert Jordan, Bernhard Scholz\",\"doi\":\"10.1145/3453483.3454070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Datalog is becoming increasingly popular as a standard tool for a variety of use cases. Modern Datalog engines can achieve high performance by specializing data structures for relational operations. For example, the Datalog engine Soufflé achieves high performance with a synthesizer that specializes data structures for relations. However, the synthesizer cannot always be deployed, and a fast interpreter is required. This work introduces the design and implementation of the Soufflé Tree Interpreter (STI). Key for the performance of the STI is the support for fast operations on relations. We obtain fast operations by de-specializing data structures so that they can work in a virtual execution environment. Our new interpreter achieves a competitive performance slowdown between 1.32 and 5.67× when compared to synthesized code. If compile time overheads of the synthesizer are also considered, the interpreter can be 6.46× faster on average for the first run.\",\"PeriodicalId\":20557,\"journal\":{\"name\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453483.3454070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient interpreter for Datalog by de-specializing relations
Datalog is becoming increasingly popular as a standard tool for a variety of use cases. Modern Datalog engines can achieve high performance by specializing data structures for relational operations. For example, the Datalog engine Soufflé achieves high performance with a synthesizer that specializes data structures for relations. However, the synthesizer cannot always be deployed, and a fast interpreter is required. This work introduces the design and implementation of the Soufflé Tree Interpreter (STI). Key for the performance of the STI is the support for fast operations on relations. We obtain fast operations by de-specializing data structures so that they can work in a virtual execution environment. Our new interpreter achieves a competitive performance slowdown between 1.32 and 5.67× when compared to synthesized code. If compile time overheads of the synthesizer are also considered, the interpreter can be 6.46× faster on average for the first run.