激光粉末床融合构建Ti6Al4V骨支架,由薄片和支柱组成的多孔结构:形态学,力学性能和生物相容性

Shuai Ma , Qian Tang , Changbao Zhu , Fuyou Wang , Qixiang Feng , Jun Song , Rossitza Setchi , Chenglong Ma , Ran Tao
{"title":"激光粉末床融合构建Ti6Al4V骨支架,由薄片和支柱组成的多孔结构:形态学,力学性能和生物相容性","authors":"Shuai Ma ,&nbsp;Qian Tang ,&nbsp;Changbao Zhu ,&nbsp;Fuyou Wang ,&nbsp;Qixiang Feng ,&nbsp;Jun Song ,&nbsp;Rossitza Setchi ,&nbsp;Chenglong Ma ,&nbsp;Ran Tao","doi":"10.1016/j.cjmeam.2022.100051","DOIUrl":null,"url":null,"abstract":"<div><p>Laser powder bed fusion (L-PBF)-built triply periodic minimal surface (TPMS) structures are designed by implicit functions and are endowed with superior characteristics, such as adjustable mechanical properties and light-weight features for bone repairing; thus, they are considered as potential candidates for bone scaffolds. Unfortunately, previous studies have mainly focused on different TPMS structures. The fundamental understanding of the differences between strut and sheet-based structures remains exclusive, where both were designed by one formula. This consequently hinders their practical applications. Herein, we compared the morphology, mechanical properties, and biocompatibility of sheet and strut-based structures. In particular, the different properties and <em>in vivo</em> bone repair effects of the two structures are uncovered. First, the morphology characteristics demonstrate that the manufacturing errors of sheet-based structures with diverse porosities are comparable, and semi-melting powders as well as the ball phenomenon are observed; in comparison, strut-based samples exhibit cracks and thickness shrinking. Second, the mechanical properties indicate that the sheet-based structures have a greater elastic modulus, energy absorption, and better repeatability compared to strut-based structures. Furthermore, layer-by-layer fracturing and diagonal shear failure modes are observed in strut-based and sheet-based structures, respectively. The <em>in vivo</em> experiment demonstrates enhanced bone tissues in the strut-based scaffold. This study significantly enriches our understanding of TPMS structures and provides significant insights in the design of bone scaffolds under various bone damaging conditions.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"1 4","pages":"Article 100051"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772665722000356/pdfft?md5=df8ab3c87f0982dec7f55432d47400bb&pid=1-s2.0-S2772665722000356-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Laser Powder Bed Fusion-built Ti6Al4V Bone Scaffolds Composed of Sheet and Strut-based Porous Structures: Morphology, Mechanical Properties, and Biocompatibility\",\"authors\":\"Shuai Ma ,&nbsp;Qian Tang ,&nbsp;Changbao Zhu ,&nbsp;Fuyou Wang ,&nbsp;Qixiang Feng ,&nbsp;Jun Song ,&nbsp;Rossitza Setchi ,&nbsp;Chenglong Ma ,&nbsp;Ran Tao\",\"doi\":\"10.1016/j.cjmeam.2022.100051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser powder bed fusion (L-PBF)-built triply periodic minimal surface (TPMS) structures are designed by implicit functions and are endowed with superior characteristics, such as adjustable mechanical properties and light-weight features for bone repairing; thus, they are considered as potential candidates for bone scaffolds. Unfortunately, previous studies have mainly focused on different TPMS structures. The fundamental understanding of the differences between strut and sheet-based structures remains exclusive, where both were designed by one formula. This consequently hinders their practical applications. Herein, we compared the morphology, mechanical properties, and biocompatibility of sheet and strut-based structures. In particular, the different properties and <em>in vivo</em> bone repair effects of the two structures are uncovered. First, the morphology characteristics demonstrate that the manufacturing errors of sheet-based structures with diverse porosities are comparable, and semi-melting powders as well as the ball phenomenon are observed; in comparison, strut-based samples exhibit cracks and thickness shrinking. Second, the mechanical properties indicate that the sheet-based structures have a greater elastic modulus, energy absorption, and better repeatability compared to strut-based structures. Furthermore, layer-by-layer fracturing and diagonal shear failure modes are observed in strut-based and sheet-based structures, respectively. The <em>in vivo</em> experiment demonstrates enhanced bone tissues in the strut-based scaffold. This study significantly enriches our understanding of TPMS structures and provides significant insights in the design of bone scaffolds under various bone damaging conditions.</p></div>\",\"PeriodicalId\":100243,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"volume\":\"1 4\",\"pages\":\"Article 100051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772665722000356/pdfft?md5=df8ab3c87f0982dec7f55432d47400bb&pid=1-s2.0-S2772665722000356-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772665722000356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665722000356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

激光粉末床融合(L-PBF)构建的三周期最小表面(TPMS)结构采用隐式函数设计,具有力学性能可调、轻量化等优点,适合骨修复;因此,它们被认为是骨支架的潜在候选材料。不幸的是,以往的研究主要集中在不同的TPMS结构上。对支撑结构和基于板的结构之间差异的基本理解仍然是排他的,两者都是由一个公式设计的。因此,这阻碍了它们的实际应用。在此,我们比较了薄片和支架结构的形态、力学性能和生物相容性。特别是,揭示了两种结构的不同性质和体内骨修复效果。首先,形貌特征表明,不同孔隙率的片基结构的制造误差具有可比性,并且观察到半熔融粉末和球现象;相比之下,基于支柱的样品表现出裂纹和厚度缩小。力学性能表明,板材结构比支柱结构具有更大的弹性模量、能量吸收和更好的可重复性。此外,在柱基和板基结构中分别观察到逐层破裂和斜剪破坏模式。体内实验表明支架增强了骨组织。本研究极大地丰富了我们对TPMS结构的认识,为各种骨损伤条件下骨支架的设计提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser Powder Bed Fusion-built Ti6Al4V Bone Scaffolds Composed of Sheet and Strut-based Porous Structures: Morphology, Mechanical Properties, and Biocompatibility

Laser powder bed fusion (L-PBF)-built triply periodic minimal surface (TPMS) structures are designed by implicit functions and are endowed with superior characteristics, such as adjustable mechanical properties and light-weight features for bone repairing; thus, they are considered as potential candidates for bone scaffolds. Unfortunately, previous studies have mainly focused on different TPMS structures. The fundamental understanding of the differences between strut and sheet-based structures remains exclusive, where both were designed by one formula. This consequently hinders their practical applications. Herein, we compared the morphology, mechanical properties, and biocompatibility of sheet and strut-based structures. In particular, the different properties and in vivo bone repair effects of the two structures are uncovered. First, the morphology characteristics demonstrate that the manufacturing errors of sheet-based structures with diverse porosities are comparable, and semi-melting powders as well as the ball phenomenon are observed; in comparison, strut-based samples exhibit cracks and thickness shrinking. Second, the mechanical properties indicate that the sheet-based structures have a greater elastic modulus, energy absorption, and better repeatability compared to strut-based structures. Furthermore, layer-by-layer fracturing and diagonal shear failure modes are observed in strut-based and sheet-based structures, respectively. The in vivo experiment demonstrates enhanced bone tissues in the strut-based scaffold. This study significantly enriches our understanding of TPMS structures and provides significant insights in the design of bone scaffolds under various bone damaging conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Withdraw: Preparation of Papers for Additive Manufacturing Frontiers A Review of Residual Stress and Deformation Modeling for Metal Additive Manufacturing Processes Additive Manufacturing (AM) of Advanced Ceramics: From Materials, Structural Designing, AM Technologies, to Performance of Printed Components Fabrication of Ceramic-polymer Piezo-composites with Triply Periodic Minimal Interfaces via Digital Light Processing Numerical Investigation of the Thermal Distortion in Multi-laser Powder Bed Fusion (ML-PBF) Additive Manufacturing of Inconel 625
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1