{"title":"基于模块化神经网络的手写签名验证系统","authors":"T. Vijayakumar","doi":"10.36548/jaicn.2022.3.007","DOIUrl":null,"url":null,"abstract":"Handwritten signature is considered as one of the primary biometric processes for human verification in various applications including banking and legal documentations. In general, the handwritten signatures are verified with respect to the pressure, direction and speed followed on a plain document. However, the traditional methods of verification are less accurate and time consuming. The proposed work aims to develop a deep learning -based approach for handwritten signature verification process through a Modular Neural Network algorithm. The work utilized the handwritten signatures dataset downloaded from the kaggle website that consists of original and forged signatures of 30 individuals. The work also included a set of 20 individual signatures for improving the sample count on training and verification process.","PeriodicalId":74231,"journal":{"name":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification System for Handwritten Signatures with Modular Neural Networks\",\"authors\":\"T. Vijayakumar\",\"doi\":\"10.36548/jaicn.2022.3.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten signature is considered as one of the primary biometric processes for human verification in various applications including banking and legal documentations. In general, the handwritten signatures are verified with respect to the pressure, direction and speed followed on a plain document. However, the traditional methods of verification are less accurate and time consuming. The proposed work aims to develop a deep learning -based approach for handwritten signature verification process through a Modular Neural Network algorithm. The work utilized the handwritten signatures dataset downloaded from the kaggle website that consists of original and forged signatures of 30 individuals. The work also included a set of 20 individual signatures for improving the sample count on training and verification process.\",\"PeriodicalId\":74231,\"journal\":{\"name\":\"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jaicn.2022.3.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jaicn.2022.3.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在银行和法律文件等各种应用中,手写签名被认为是人类验证的主要生物识别过程之一。一般来说,手写签名是根据在普通文件上的压力、方向和速度进行核实的。然而,传统的验证方法准确性较低,耗时较长。提出的工作旨在通过模块化神经网络算法开发一种基于深度学习的手写签名验证过程方法。这项工作利用了从kaggle网站下载的手写签名数据集,其中包括30个人的原始和伪造签名。这项工作还包括一套20个个人签名,以改善培训和核查过程中的样本计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification System for Handwritten Signatures with Modular Neural Networks
Handwritten signature is considered as one of the primary biometric processes for human verification in various applications including banking and legal documentations. In general, the handwritten signatures are verified with respect to the pressure, direction and speed followed on a plain document. However, the traditional methods of verification are less accurate and time consuming. The proposed work aims to develop a deep learning -based approach for handwritten signature verification process through a Modular Neural Network algorithm. The work utilized the handwritten signatures dataset downloaded from the kaggle website that consists of original and forged signatures of 30 individuals. The work also included a set of 20 individual signatures for improving the sample count on training and verification process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Fake Job Advertisements using Machine Learning algorithms Effective Approach for Early Detection of Diabetes by Logistic Regression through Risk Prediction Verification System for Handwritten Signatures with Modular Neural Networks Economic and competitive potential of lignin-based thermoplastics using a multicriteria decision-making method Development of reinforced paper and mitigation of the challenges of raw material availability by utilizing Areca nut leaf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1