分布参数管道系统的跟踪模型、预测控制及移动水平估计设计

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-10-01 DOI:10.1016/j.compchemeng.2023.108381
Lu Zhang, Junyao Xie, Stevan Dubljevic
{"title":"分布参数管道系统的跟踪模型、预测控制及移动水平估计设计","authors":"Lu Zhang,&nbsp;Junyao Xie,&nbsp;Stevan Dubljevic","doi":"10.1016/j.compchemeng.2023.108381","DOIUrl":null,"url":null,"abstract":"<div><p>This manuscript proposes moving horizon control and state/parameter estimation designs for pipeline networks modelled by partial differential equations (PDEs) with boundary actuation. The spatial–temporal pressure and velocity dynamics within the pipelines are described by a system of six coupled one-dimensional first-order nonlinear hyperbolic PDEs. To address the discrete-time modelling challenge and preserve the infinite-dimensional nature of the pipeline system, the Cayley–Tustin transformation is deployed for model time discretization without any spatial discretization or model reduction. Considering the lack of full state information across the entire pipeline manifold, unknown states and uncertain parameters are estimated using moving horizon estimation (MHE). Based on the estimated states and parameters, a tracking model predictive control (MPC) strategy for the discrete-time infinite-dimensional pipeline system is proposed, which enables specific operation while ensuring physical constraint satisfaction. The effectiveness of the proposed controller and estimator designs is demonstrated via numerical examples.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108381"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009813542300251X/pdfft?md5=9e305fb5afc7c08f13e8bcb568b7922e&pid=1-s2.0-S009813542300251X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tracking model predictive control and moving horizon estimation design of distributed parameter pipeline systems\",\"authors\":\"Lu Zhang,&nbsp;Junyao Xie,&nbsp;Stevan Dubljevic\",\"doi\":\"10.1016/j.compchemeng.2023.108381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This manuscript proposes moving horizon control and state/parameter estimation designs for pipeline networks modelled by partial differential equations (PDEs) with boundary actuation. The spatial–temporal pressure and velocity dynamics within the pipelines are described by a system of six coupled one-dimensional first-order nonlinear hyperbolic PDEs. To address the discrete-time modelling challenge and preserve the infinite-dimensional nature of the pipeline system, the Cayley–Tustin transformation is deployed for model time discretization without any spatial discretization or model reduction. Considering the lack of full state information across the entire pipeline manifold, unknown states and uncertain parameters are estimated using moving horizon estimation (MHE). Based on the estimated states and parameters, a tracking model predictive control (MPC) strategy for the discrete-time infinite-dimensional pipeline system is proposed, which enables specific operation while ensuring physical constraint satisfaction. The effectiveness of the proposed controller and estimator designs is demonstrated via numerical examples.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"178 \",\"pages\":\"Article 108381\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S009813542300251X/pdfft?md5=9e305fb5afc7c08f13e8bcb568b7922e&pid=1-s2.0-S009813542300251X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009813542300251X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542300251X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了用边界驱动的偏微分方程(PDEs)建模的管网的移动水平控制和状态/参数估计设计。用六个一维一阶非线性双曲偏微分方程系统描述了管道内压力和速度的时空动态。为了解决离散时间建模的挑战,并保持管道系统的无限维性质,采用Cayley-Tustin变换进行模型时间离散化,而不进行任何空间离散化或模型缩减。考虑到整个管道流形缺乏完整的状态信息,采用移动视界估计(MHE)对未知状态和不确定参数进行估计。基于估计的状态和参数,提出了一种离散无限维管道系统的跟踪模型预测控制(MPC)策略,在保证满足物理约束的前提下实现具体操作。通过数值算例验证了所提控制器和估计器设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking model predictive control and moving horizon estimation design of distributed parameter pipeline systems

This manuscript proposes moving horizon control and state/parameter estimation designs for pipeline networks modelled by partial differential equations (PDEs) with boundary actuation. The spatial–temporal pressure and velocity dynamics within the pipelines are described by a system of six coupled one-dimensional first-order nonlinear hyperbolic PDEs. To address the discrete-time modelling challenge and preserve the infinite-dimensional nature of the pipeline system, the Cayley–Tustin transformation is deployed for model time discretization without any spatial discretization or model reduction. Considering the lack of full state information across the entire pipeline manifold, unknown states and uncertain parameters are estimated using moving horizon estimation (MHE). Based on the estimated states and parameters, a tracking model predictive control (MPC) strategy for the discrete-time infinite-dimensional pipeline system is proposed, which enables specific operation while ensuring physical constraint satisfaction. The effectiveness of the proposed controller and estimator designs is demonstrated via numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1