{"title":"磁磨料精加工过程中磨粒形貌及其他影响参数的影响","authors":"F. Ahmadi, Hassan Beiramlou, P. Yazdi","doi":"10.1051/MECA/2021013","DOIUrl":null,"url":null,"abstract":"Surface characteristics play a very important role in medical implants and among surface features, surface roughness is very effective in some medical applications. Among the various methods used to improve surface roughness, magnetic abrasive finishing (MAF) process has been widely used in medical engineering. In this study, the effect of abrasive particle morphology along with four other process parameters, including type of work metal, finishing time, speed of finishing operation, and the type of abrasive powder were experimentally evaluated. Full factorial technique was used for design of experiment. Three commonly used metals in orthopedic implants i.e., Ti-6Al-4V alloy, AZ31 alloy and austenitic stainless-steel 316LVM, were selected for this study. Also, two types of magnetic abrasive particles with different shapes (spherical and rod-shaped) were considered in the experiments. The results of the experiments indicated that the morphology of the abrasive particles and the finishing time had the greatest effect on surface roughness and using rod-shaped abrasive particles resulted in better surface quality comparing to the spherical particles. Besides, the surface quality of steel 316LVM after MAF was the best among the other examined metals. Interaction plots of ANOVA also showed that interactions of material with morphology of abrasive particles, and material with machining time were found to be reasonably significant.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"58 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of abrasive particle morphology along with other influencing parameters in magnetic abrasive finishing process\",\"authors\":\"F. Ahmadi, Hassan Beiramlou, P. Yazdi\",\"doi\":\"10.1051/MECA/2021013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface characteristics play a very important role in medical implants and among surface features, surface roughness is very effective in some medical applications. Among the various methods used to improve surface roughness, magnetic abrasive finishing (MAF) process has been widely used in medical engineering. In this study, the effect of abrasive particle morphology along with four other process parameters, including type of work metal, finishing time, speed of finishing operation, and the type of abrasive powder were experimentally evaluated. Full factorial technique was used for design of experiment. Three commonly used metals in orthopedic implants i.e., Ti-6Al-4V alloy, AZ31 alloy and austenitic stainless-steel 316LVM, were selected for this study. Also, two types of magnetic abrasive particles with different shapes (spherical and rod-shaped) were considered in the experiments. The results of the experiments indicated that the morphology of the abrasive particles and the finishing time had the greatest effect on surface roughness and using rod-shaped abrasive particles resulted in better surface quality comparing to the spherical particles. Besides, the surface quality of steel 316LVM after MAF was the best among the other examined metals. Interaction plots of ANOVA also showed that interactions of material with morphology of abrasive particles, and material with machining time were found to be reasonably significant.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/MECA/2021013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/MECA/2021013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of abrasive particle morphology along with other influencing parameters in magnetic abrasive finishing process
Surface characteristics play a very important role in medical implants and among surface features, surface roughness is very effective in some medical applications. Among the various methods used to improve surface roughness, magnetic abrasive finishing (MAF) process has been widely used in medical engineering. In this study, the effect of abrasive particle morphology along with four other process parameters, including type of work metal, finishing time, speed of finishing operation, and the type of abrasive powder were experimentally evaluated. Full factorial technique was used for design of experiment. Three commonly used metals in orthopedic implants i.e., Ti-6Al-4V alloy, AZ31 alloy and austenitic stainless-steel 316LVM, were selected for this study. Also, two types of magnetic abrasive particles with different shapes (spherical and rod-shaped) were considered in the experiments. The results of the experiments indicated that the morphology of the abrasive particles and the finishing time had the greatest effect on surface roughness and using rod-shaped abrasive particles resulted in better surface quality comparing to the spherical particles. Besides, the surface quality of steel 316LVM after MAF was the best among the other examined metals. Interaction plots of ANOVA also showed that interactions of material with morphology of abrasive particles, and material with machining time were found to be reasonably significant.
期刊介绍:
An International Journal on Mechanical Sciences and Engineering Applications
With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities.
Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.