常曲率连续体机器人动力学建模的新方法

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS Mechatronic Systems and Control Pub Date : 2019-11-26 DOI:10.1115/dscc2019-8999
Yujiong Liu, P. Ben-Tzvi
{"title":"常曲率连续体机器人动力学建模的新方法","authors":"Yujiong Liu, P. Ben-Tzvi","doi":"10.1115/dscc2019-8999","DOIUrl":null,"url":null,"abstract":"\n Inspired by nature, continuum robots show their potential in human-centered environments due to the compliant-to-obstacle features and dexterous mobility. However, there are few such robots successfully implemented outside the laboratory so far. One reason is believed to be due to the real time control challenge for soft robots, which require a highly efficient, highly accurate dynamic model. This paper presents a new systematic methodology to formulate the dynamics of constant curvature continuum robots. The new approach builds on several new techniques: 1) using the virtual work principle to formulate the equation of motion, 2) using specifically selected kinematic representations to separate integral variables from the non-integral variables, and 3) using vector representations to put the integral in a compact form. By doing so, the hard-to-solve integrals are evaluated analytically in advance and the accurate inverse dynamics are established accordingly. Numerical simulations are conducted to evaluate the performances of the newly proposed model.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Approach to Model Constant Curvature Continuum Robot Dynamics\",\"authors\":\"Yujiong Liu, P. Ben-Tzvi\",\"doi\":\"10.1115/dscc2019-8999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Inspired by nature, continuum robots show their potential in human-centered environments due to the compliant-to-obstacle features and dexterous mobility. However, there are few such robots successfully implemented outside the laboratory so far. One reason is believed to be due to the real time control challenge for soft robots, which require a highly efficient, highly accurate dynamic model. This paper presents a new systematic methodology to formulate the dynamics of constant curvature continuum robots. The new approach builds on several new techniques: 1) using the virtual work principle to formulate the equation of motion, 2) using specifically selected kinematic representations to separate integral variables from the non-integral variables, and 3) using vector representations to put the integral in a compact form. By doing so, the hard-to-solve integrals are evaluated analytically in advance and the accurate inverse dynamics are established accordingly. Numerical simulations are conducted to evaluate the performances of the newly proposed model.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-8999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

受大自然的启发,连续体机器人在以人为中心的环境中显示出其潜力,因为它具有顺应障碍的特征和灵活的移动能力。然而,到目前为止,很少有这样的机器人在实验室之外成功实施。其中一个原因被认为是由于软机器人的实时控制挑战,这需要一个高效,高精度的动态模型。本文提出了一种新的系统方法来表述常曲率连续体机器人的动力学。新方法建立在几个新技术的基础上:1)使用虚功原理来制定运动方程,2)使用特别选择的运动学表示来分离积分变量和非积分变量,以及3)使用矢量表示将积分放在紧致形式中。通过这种方法,可以对难以求解的积分进行提前解析求解,从而建立精确的逆动力学模型。通过数值仿真对该模型的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Approach to Model Constant Curvature Continuum Robot Dynamics
Inspired by nature, continuum robots show their potential in human-centered environments due to the compliant-to-obstacle features and dexterous mobility. However, there are few such robots successfully implemented outside the laboratory so far. One reason is believed to be due to the real time control challenge for soft robots, which require a highly efficient, highly accurate dynamic model. This paper presents a new systematic methodology to formulate the dynamics of constant curvature continuum robots. The new approach builds on several new techniques: 1) using the virtual work principle to formulate the equation of motion, 2) using specifically selected kinematic representations to separate integral variables from the non-integral variables, and 3) using vector representations to put the integral in a compact form. By doing so, the hard-to-solve integrals are evaluated analytically in advance and the accurate inverse dynamics are established accordingly. Numerical simulations are conducted to evaluate the performances of the newly proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
期刊最新文献
APPLICATION OF MULTIAXIAL CNC TECHNOLOGY IN PRECISION MOLD MANUFACTURING, 1-9. TRAJECTORY TRACKING OF NONHOLONOMIC CONSTRAINT MOBILE ROBOT BASED ON ADRC INTERNET INFORMATION COLLECTION AND DATA ANALYSIS BASED ON ARTIFICIAL INTELLIGENCE, 1-9. SI DESIGN ON TRACTION BRAKING CHARACTERISTICS TEST OF TRACTION MOTOR FOR RAIL TRANSIT, 1-9. MODELLING AND SIMULATION OF FRICTION RESISTANCE OF SUPERHYDROPHOBIC SURFACE MICROSTRUCTURE, 202-209.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1