太赫兹应用中基于GaN异质结构的热电子微热计

R. Ramaswamy, K. Wang, A. Muraviev, R. Gaska, J. Yang, A. Sergeev, R. Olac-vaw, V. Mitin
{"title":"太赫兹应用中基于GaN异质结构的热电子微热计","authors":"R. Ramaswamy, K. Wang, A. Muraviev, R. Gaska, J. Yang, A. Sergeev, R. Olac-vaw, V. Mitin","doi":"10.1109/IRMMW-THZ.2011.6105191","DOIUrl":null,"url":null,"abstract":"Microbolometers based on two dimensional electron gas (2DEG) medium in GaN semiconductor were fabricated and characterized. Low contact resistance (below 0.5 Ω·mm) achieved in our devices ensures that the THz voltage primarily drops across the active region. Due to small electron momentum relaxation time, the inductive part of the impedance in our devices is small, so these sensors can be combined with standard antennas or waveguides. Optical transmission measurements of the GaN heterostructures indicate that the 2DEG has significant coupling to the THz radiation due to Drude absorption up to frequencies well above 3 THz (100 cm<sup>−1</sup>) caused by high electron concentration (∼1–4 × 10<sup>13</sup> cm<sup>−2</sup>) and short momentum relaxation time (∼10<sup>−12</sup> sec). The normalized terahertz responsivity level defined as (dJ/J)/P is estimated to be 1.2×10<sup>−2</sup> W<sup>−1</sup> at 1.84 THz with dR/dT of ∼3Ω/K at room temperature in our device.","PeriodicalId":6353,"journal":{"name":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hot electron microbolometers based on GaN heterostructures for THz applications\",\"authors\":\"R. Ramaswamy, K. Wang, A. Muraviev, R. Gaska, J. Yang, A. Sergeev, R. Olac-vaw, V. Mitin\",\"doi\":\"10.1109/IRMMW-THZ.2011.6105191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbolometers based on two dimensional electron gas (2DEG) medium in GaN semiconductor were fabricated and characterized. Low contact resistance (below 0.5 Ω·mm) achieved in our devices ensures that the THz voltage primarily drops across the active region. Due to small electron momentum relaxation time, the inductive part of the impedance in our devices is small, so these sensors can be combined with standard antennas or waveguides. Optical transmission measurements of the GaN heterostructures indicate that the 2DEG has significant coupling to the THz radiation due to Drude absorption up to frequencies well above 3 THz (100 cm<sup>−1</sup>) caused by high electron concentration (∼1–4 × 10<sup>13</sup> cm<sup>−2</sup>) and short momentum relaxation time (∼10<sup>−12</sup> sec). The normalized terahertz responsivity level defined as (dJ/J)/P is estimated to be 1.2×10<sup>−2</sup> W<sup>−1</sup> at 1.84 THz with dR/dT of ∼3Ω/K at room temperature in our device.\",\"PeriodicalId\":6353,\"journal\":{\"name\":\"2011 International Conference on Infrared, Millimeter, and Terahertz Waves\",\"volume\":\"8 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THZ.2011.6105191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2011.6105191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

制备了基于二维电子气体(2DEG)介质的GaN半导体微测热计,并对其进行了表征。在我们的器件中实现的低接触电阻(低于0.5 Ω·mm)确保了太赫兹电压主要在有源区域下降。由于电子动量弛豫时间小,我们的器件中阻抗的电感部分很小,因此这些传感器可以与标准天线或波导结合使用。氮化镓异质结构的光学传输测量表明,由于高电子浓度(~ 1 - 4 × 1013 cm−2)和短动量弛豫时间(~ 10−12秒)导致的频率远高于3 THz (100 cm−1)的德鲁德吸收,2DEG与太赫兹辐射具有显著的耦合。定义为(dJ/J)/P的归一化太赫兹响应水平在1.84 THz下估计为1.2×10−2 W−1,dR/dT为3Ω/K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hot electron microbolometers based on GaN heterostructures for THz applications
Microbolometers based on two dimensional electron gas (2DEG) medium in GaN semiconductor were fabricated and characterized. Low contact resistance (below 0.5 Ω·mm) achieved in our devices ensures that the THz voltage primarily drops across the active region. Due to small electron momentum relaxation time, the inductive part of the impedance in our devices is small, so these sensors can be combined with standard antennas or waveguides. Optical transmission measurements of the GaN heterostructures indicate that the 2DEG has significant coupling to the THz radiation due to Drude absorption up to frequencies well above 3 THz (100 cm−1) caused by high electron concentration (∼1–4 × 1013 cm−2) and short momentum relaxation time (∼10−12 sec). The normalized terahertz responsivity level defined as (dJ/J)/P is estimated to be 1.2×10−2 W−1 at 1.84 THz with dR/dT of ∼3Ω/K at room temperature in our device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
THz photonics: The synergy of micro-microwaves and quasi-optics Low energy excitations in half-doped manganite Eu0.5Sr0.5MnO3 Generation of frequency-multiplexed millimeter wave signal using Mach-Zehnder-modulator-based flat comb generator Carrier waves in photomixer illuminated with a laser induced interference pattern Terahertz spectroscopy of electronic ferroelectric LuFe2O4 crystal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1