{"title":"摘要1284:通过ATF4转录调控p53突变肿瘤p53通路的p53独立恢复","authors":"X. Tian, N. Ahsan, W. El-Deiry","doi":"10.1158/1538-7445.AM2021-1284","DOIUrl":null,"url":null,"abstract":"A long-term goal in the cancer-field has been to develop strategies for treating p53-mutated tumors. A novel small-molecule, PG3-Oc, restores p53 pathway-signaling in tumor cells with mutant-p53, independently of p53/p73. PG3-Oc partially upregulates the p53-transcriptome (13.7% of public p53 target-gene dataset; 15.2% of in-house dataset) and p53-proteome (18%, HT29; 16%, HCT116-p53-/-). Bioinformatic analysis indicates critical p53-effectors of growth-arrest (p21), apoptosis (PUMA, DR5, Noxa), autophagy (DRAM1), and metastasis-suppression (NDRG1) are induced by PG3-Oc. ERK1/2- and CDK9-kinases are required to upregulate ATF4 by PG3-Oc which restores p53 transcriptomic-targets in cells without functional-p53. PG3-Oc represses MYC (ATF4-independent), and upregulates PUMA (ATF4-dependent) in mediating cell death. With largely nonoverlapping transcriptomes, induced-ATF4 restores p53 transcriptomic targets in drug-treated cells including functionally important mediators such as PUMA and DR5. Our results demonstrate novel p53-independent drug-induced molecular reprogramming involving ERK1/2, CDK9, and ATF4 to restore upregulation of p53 effector genes required for cell death and tumor suppression. Citation Format: Xiaobing Tian, Nagib Ahsan, Wafik S. El-Deiry. P53-independent restoration of p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1284.","PeriodicalId":12258,"journal":{"name":"Experimental and Molecular Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract 1284: P53-independent restoration of p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation\",\"authors\":\"X. Tian, N. Ahsan, W. El-Deiry\",\"doi\":\"10.1158/1538-7445.AM2021-1284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A long-term goal in the cancer-field has been to develop strategies for treating p53-mutated tumors. A novel small-molecule, PG3-Oc, restores p53 pathway-signaling in tumor cells with mutant-p53, independently of p53/p73. PG3-Oc partially upregulates the p53-transcriptome (13.7% of public p53 target-gene dataset; 15.2% of in-house dataset) and p53-proteome (18%, HT29; 16%, HCT116-p53-/-). Bioinformatic analysis indicates critical p53-effectors of growth-arrest (p21), apoptosis (PUMA, DR5, Noxa), autophagy (DRAM1), and metastasis-suppression (NDRG1) are induced by PG3-Oc. ERK1/2- and CDK9-kinases are required to upregulate ATF4 by PG3-Oc which restores p53 transcriptomic-targets in cells without functional-p53. PG3-Oc represses MYC (ATF4-independent), and upregulates PUMA (ATF4-dependent) in mediating cell death. With largely nonoverlapping transcriptomes, induced-ATF4 restores p53 transcriptomic targets in drug-treated cells including functionally important mediators such as PUMA and DR5. Our results demonstrate novel p53-independent drug-induced molecular reprogramming involving ERK1/2, CDK9, and ATF4 to restore upregulation of p53 effector genes required for cell death and tumor suppression. Citation Format: Xiaobing Tian, Nagib Ahsan, Wafik S. El-Deiry. P53-independent restoration of p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1284.\",\"PeriodicalId\":12258,\"journal\":{\"name\":\"Experimental and Molecular Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7445.AM2021-1284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.AM2021-1284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract 1284: P53-independent restoration of p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation
A long-term goal in the cancer-field has been to develop strategies for treating p53-mutated tumors. A novel small-molecule, PG3-Oc, restores p53 pathway-signaling in tumor cells with mutant-p53, independently of p53/p73. PG3-Oc partially upregulates the p53-transcriptome (13.7% of public p53 target-gene dataset; 15.2% of in-house dataset) and p53-proteome (18%, HT29; 16%, HCT116-p53-/-). Bioinformatic analysis indicates critical p53-effectors of growth-arrest (p21), apoptosis (PUMA, DR5, Noxa), autophagy (DRAM1), and metastasis-suppression (NDRG1) are induced by PG3-Oc. ERK1/2- and CDK9-kinases are required to upregulate ATF4 by PG3-Oc which restores p53 transcriptomic-targets in cells without functional-p53. PG3-Oc represses MYC (ATF4-independent), and upregulates PUMA (ATF4-dependent) in mediating cell death. With largely nonoverlapping transcriptomes, induced-ATF4 restores p53 transcriptomic targets in drug-treated cells including functionally important mediators such as PUMA and DR5. Our results demonstrate novel p53-independent drug-induced molecular reprogramming involving ERK1/2, CDK9, and ATF4 to restore upregulation of p53 effector genes required for cell death and tumor suppression. Citation Format: Xiaobing Tian, Nagib Ahsan, Wafik S. El-Deiry. P53-independent restoration of p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1284.