基于三维特征提取算法的图像分类及关键技术研究

J. Sensors Pub Date : 2022-08-16 DOI:10.1155/2022/5859925
Lei Lei, Ziqi Jia, Zechen Wu
{"title":"基于三维特征提取算法的图像分类及关键技术研究","authors":"Lei Lei, Ziqi Jia, Zechen Wu","doi":"10.1155/2022/5859925","DOIUrl":null,"url":null,"abstract":"Image classification and recognition has a very wide range of applications in computer vision, which involves many fields, such as image retrieval, image analysis, and robot positioning. Especially with the rise of brain science and cognitive science research, as well as the increasing diversification of imaging means, three-dimensional image data mainly based on magnetic resonance image plays an increasingly important role in image classification and recognition, especially in medical image classification and recognition. However, due to the high dimensional characteristics of human magnetic resonance images, human readability is reduced. Therefore, classification and recognition of 3-dimensional images is still a challenge. In order to better extract local features from images and effectively use their spatial information, this paper improved the “feature bag” and “spatial pyramid matching” algorithms on the basis of 3D feature extraction algorithm and proposed an image classification framework based on 3D feature extraction algorithm. Firstly, the multiresolution “3D spatial pyramid” algorithm, the multiscale image segmentation and image representation method, and the SVM classifier and feature fusion method are described. Secondly, the gender information contained in the magnetic resonance images is classified and recognized on the three databases selected in the experiment. Experimental results show that this method can effectively utilize the spatial information of three-dimensional images and achieve satisfactory results in the classification and recognition of human magnetic resonance images.","PeriodicalId":14776,"journal":{"name":"J. Sensors","volume":"80 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Image Classification and Key Technologies Based on 3D Feature Extraction Algorithm\",\"authors\":\"Lei Lei, Ziqi Jia, Zechen Wu\",\"doi\":\"10.1155/2022/5859925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image classification and recognition has a very wide range of applications in computer vision, which involves many fields, such as image retrieval, image analysis, and robot positioning. Especially with the rise of brain science and cognitive science research, as well as the increasing diversification of imaging means, three-dimensional image data mainly based on magnetic resonance image plays an increasingly important role in image classification and recognition, especially in medical image classification and recognition. However, due to the high dimensional characteristics of human magnetic resonance images, human readability is reduced. Therefore, classification and recognition of 3-dimensional images is still a challenge. In order to better extract local features from images and effectively use their spatial information, this paper improved the “feature bag” and “spatial pyramid matching” algorithms on the basis of 3D feature extraction algorithm and proposed an image classification framework based on 3D feature extraction algorithm. Firstly, the multiresolution “3D spatial pyramid” algorithm, the multiscale image segmentation and image representation method, and the SVM classifier and feature fusion method are described. Secondly, the gender information contained in the magnetic resonance images is classified and recognized on the three databases selected in the experiment. Experimental results show that this method can effectively utilize the spatial information of three-dimensional images and achieve satisfactory results in the classification and recognition of human magnetic resonance images.\",\"PeriodicalId\":14776,\"journal\":{\"name\":\"J. Sensors\",\"volume\":\"80 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5859925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5859925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像分类与识别在计算机视觉中有着非常广泛的应用,涉及到图像检索、图像分析、机器人定位等诸多领域。特别是随着脑科学和认知科学研究的兴起,以及成像手段的日益多样化,以磁共振成像为主的三维图像数据在图像分类与识别中,尤其是在医学图像分类与识别中发挥着越来越重要的作用。然而,由于人体磁共振图像的高维特征,降低了人类的可读性。因此,三维图像的分类和识别仍然是一个挑战。为了更好地从图像中提取局部特征并有效利用其空间信息,本文在三维特征提取算法的基础上对“特征包”和“空间金字塔匹配”算法进行了改进,提出了一种基于三维特征提取算法的图像分类框架。首先,介绍了多分辨率“三维空间金字塔”算法、多尺度图像分割与图像表示方法、支持向量机分类器与特征融合方法;其次,在实验中选择的三个数据库中对磁共振图像中包含的性别信息进行分类识别。实验结果表明,该方法能够有效地利用三维图像的空间信息,在人体磁共振图像的分类识别中取得了满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Image Classification and Key Technologies Based on 3D Feature Extraction Algorithm
Image classification and recognition has a very wide range of applications in computer vision, which involves many fields, such as image retrieval, image analysis, and robot positioning. Especially with the rise of brain science and cognitive science research, as well as the increasing diversification of imaging means, three-dimensional image data mainly based on magnetic resonance image plays an increasingly important role in image classification and recognition, especially in medical image classification and recognition. However, due to the high dimensional characteristics of human magnetic resonance images, human readability is reduced. Therefore, classification and recognition of 3-dimensional images is still a challenge. In order to better extract local features from images and effectively use their spatial information, this paper improved the “feature bag” and “spatial pyramid matching” algorithms on the basis of 3D feature extraction algorithm and proposed an image classification framework based on 3D feature extraction algorithm. Firstly, the multiresolution “3D spatial pyramid” algorithm, the multiscale image segmentation and image representation method, and the SVM classifier and feature fusion method are described. Secondly, the gender information contained in the magnetic resonance images is classified and recognized on the three databases selected in the experiment. Experimental results show that this method can effectively utilize the spatial information of three-dimensional images and achieve satisfactory results in the classification and recognition of human magnetic resonance images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Index Construction and Application of School-Enterprise Collaborative Education Platform Based on AHP Fuzzy Method in Double Creation Education Practice Optimization of Intelligent Display Mode of Museum Cultural Relics Based on Intelligent Wireless Sensor Network Feature Extraction Method of Art Visual Communication Image Based on 5G Intelligent Sensor Network Scene Classification Using Deep Networks Combined with Visual Attention Spatial Expression of Multifaceted Soft Decoration Elements: Application of 3D Reconstruction Algorithm in Soft Decoration and Furnishing Design of Office Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1