{"title":"距离使这类人变得更强:这是一种差分隐私的微积分","authors":"J. Reed, B. Pierce","doi":"10.1145/1863543.1863568","DOIUrl":null,"url":null,"abstract":"We want assurances that sensitive information will not be disclosed when aggregate data derived from a database is published. Differential privacy offers a strong statistical guarantee that the effect of the presence of any individual in a database will be negligible, even when an adversary has auxiliary knowledge. Much of the prior work in this area consists of proving algorithms to be differentially private one at a time; we propose to streamline this process with a functional language whose type system automatically guarantees differential privacy, allowing the programmer to write complex privacy-safe query programs in a flexible and compositional way.\n The key novelty is the way our type system captures function sensitivity, a measure of how much a function can magnify the distance between similar inputs: well-typed programs not only can't go wrong, they can't go too far on nearby inputs. Moreover, by introducing a monad for random computations, we can show that the established definition of differential privacy falls out naturally as a special case of this soundness principle. We develop examples including known differentially private algorithms, privacy-aware variants of standard functional programming idioms, and compositionality principles for differential privacy.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"83 1 1","pages":"157-168"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"248","resultStr":"{\"title\":\"Distance makes the types grow stronger: a calculus for differential privacy\",\"authors\":\"J. Reed, B. Pierce\",\"doi\":\"10.1145/1863543.1863568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We want assurances that sensitive information will not be disclosed when aggregate data derived from a database is published. Differential privacy offers a strong statistical guarantee that the effect of the presence of any individual in a database will be negligible, even when an adversary has auxiliary knowledge. Much of the prior work in this area consists of proving algorithms to be differentially private one at a time; we propose to streamline this process with a functional language whose type system automatically guarantees differential privacy, allowing the programmer to write complex privacy-safe query programs in a flexible and compositional way.\\n The key novelty is the way our type system captures function sensitivity, a measure of how much a function can magnify the distance between similar inputs: well-typed programs not only can't go wrong, they can't go too far on nearby inputs. Moreover, by introducing a monad for random computations, we can show that the established definition of differential privacy falls out naturally as a special case of this soundness principle. We develop examples including known differentially private algorithms, privacy-aware variants of standard functional programming idioms, and compositionality principles for differential privacy.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"83 1 1\",\"pages\":\"157-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"248\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1863543.1863568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1863543.1863568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distance makes the types grow stronger: a calculus for differential privacy
We want assurances that sensitive information will not be disclosed when aggregate data derived from a database is published. Differential privacy offers a strong statistical guarantee that the effect of the presence of any individual in a database will be negligible, even when an adversary has auxiliary knowledge. Much of the prior work in this area consists of proving algorithms to be differentially private one at a time; we propose to streamline this process with a functional language whose type system automatically guarantees differential privacy, allowing the programmer to write complex privacy-safe query programs in a flexible and compositional way.
The key novelty is the way our type system captures function sensitivity, a measure of how much a function can magnify the distance between similar inputs: well-typed programs not only can't go wrong, they can't go too far on nearby inputs. Moreover, by introducing a monad for random computations, we can show that the established definition of differential privacy falls out naturally as a special case of this soundness principle. We develop examples including known differentially private algorithms, privacy-aware variants of standard functional programming idioms, and compositionality principles for differential privacy.