H. Alyami, Wael Alosaimi, M. Krichen, Roobaea Alroobaea
{"title":"利用人工智能监测社交距离以对抗COVID-19病毒传播","authors":"H. Alyami, Wael Alosaimi, M. Krichen, Roobaea Alroobaea","doi":"10.4018/IJOSSP.2021070104","DOIUrl":null,"url":null,"abstract":"To restrict COVID-19, individuals must remain two meters away from one another in public since public health authorities find this a healthy distance. In this way, the incidence of “social distancing” keeps pace with COVID-19 spread. For this purpose, the proposed solution consists of the development of a tool based on AI technologies which takes as input videos (in real time) from streets and public spaces and gives as output the places where social distancing is not respected. Detected persons who are not respecting social distancing are surrounded with red rectangles and those who respect social distancing with green rectangles. The solution has been tested for the case of videos from the two Holy Mosques in Saudi Arabia: Makkah and Madinah. As a novel contribution compared to existent approaches in the literature, the solution allows the detection of the age, class, and sex of persons not respecting social distancing. Person detection is performed using the Faster RCNN with ResNet-50 as it is the backbone network that is pre-trained with the open source COCO dataset. The obtained results are satisfactory and may be improved by considering more sophisticated cameras, material, and techniques.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"77 8 1","pages":"48-63"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Monitoring Social Distancing Using Artificial Intelligence for Fighting COVID-19 Virus Spread\",\"authors\":\"H. Alyami, Wael Alosaimi, M. Krichen, Roobaea Alroobaea\",\"doi\":\"10.4018/IJOSSP.2021070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To restrict COVID-19, individuals must remain two meters away from one another in public since public health authorities find this a healthy distance. In this way, the incidence of “social distancing” keeps pace with COVID-19 spread. For this purpose, the proposed solution consists of the development of a tool based on AI technologies which takes as input videos (in real time) from streets and public spaces and gives as output the places where social distancing is not respected. Detected persons who are not respecting social distancing are surrounded with red rectangles and those who respect social distancing with green rectangles. The solution has been tested for the case of videos from the two Holy Mosques in Saudi Arabia: Makkah and Madinah. As a novel contribution compared to existent approaches in the literature, the solution allows the detection of the age, class, and sex of persons not respecting social distancing. Person detection is performed using the Faster RCNN with ResNet-50 as it is the backbone network that is pre-trained with the open source COCO dataset. The obtained results are satisfactory and may be improved by considering more sophisticated cameras, material, and techniques.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"77 8 1\",\"pages\":\"48-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2021070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2021070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Monitoring Social Distancing Using Artificial Intelligence for Fighting COVID-19 Virus Spread
To restrict COVID-19, individuals must remain two meters away from one another in public since public health authorities find this a healthy distance. In this way, the incidence of “social distancing” keeps pace with COVID-19 spread. For this purpose, the proposed solution consists of the development of a tool based on AI technologies which takes as input videos (in real time) from streets and public spaces and gives as output the places where social distancing is not respected. Detected persons who are not respecting social distancing are surrounded with red rectangles and those who respect social distancing with green rectangles. The solution has been tested for the case of videos from the two Holy Mosques in Saudi Arabia: Makkah and Madinah. As a novel contribution compared to existent approaches in the literature, the solution allows the detection of the age, class, and sex of persons not respecting social distancing. Person detection is performed using the Faster RCNN with ResNet-50 as it is the backbone network that is pre-trained with the open source COCO dataset. The obtained results are satisfactory and may be improved by considering more sophisticated cameras, material, and techniques.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.