{"title":"膜厚度对生物聚合物壳聚糖基电活性纸机电性能影响的研究","authors":"Zhuangzhi Sun, Wenlong Song, Gang Zhao, Jing Wang","doi":"10.1080/03602559.2017.1344853","DOIUrl":null,"url":null,"abstract":"ABSTRACT Chitosan-based electroactive paper has been reported as a smart material, which has merits in terms of lightweight, dry condition, biodegradability, sustainability, large displacement output, and low actuation voltage. However, our recent investigations found its actuation performance is highly sensitive to the membrane thicknesses, both on the electrolyte layer and the electrode layer. Focused on this issue, in this paper, we introduce a biopolymer ionic actuator made by multiwalled carbon nanotube, ionic liquid electrode, and polymer-supported chitosan. As a result, we find that chitosan polymer actuator with the thick electrode layer (0.7 mm) behaves with a larger blocking force (9.66 mN) and a smaller displacement (9.53 mm), and the lifetime under applied voltage of 3 V at 0.25 Hz is 1.75 times surpassed the thin one (0.3 mm). In addition to that, we investigate effects of membrane thicknesses on the electrical properties of chitosan polymer actuator, and figure out the relationship between the tensile strength of the membrane and the volume of the ionic solution in the electrolyte layer. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"43 1","pages":"690 - 699"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Investigation into Effects of Membrane Thickness on Electromechanical Properties of Biopolymer Chitosan-Based Electroactive Paper\",\"authors\":\"Zhuangzhi Sun, Wenlong Song, Gang Zhao, Jing Wang\",\"doi\":\"10.1080/03602559.2017.1344853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Chitosan-based electroactive paper has been reported as a smart material, which has merits in terms of lightweight, dry condition, biodegradability, sustainability, large displacement output, and low actuation voltage. However, our recent investigations found its actuation performance is highly sensitive to the membrane thicknesses, both on the electrolyte layer and the electrode layer. Focused on this issue, in this paper, we introduce a biopolymer ionic actuator made by multiwalled carbon nanotube, ionic liquid electrode, and polymer-supported chitosan. As a result, we find that chitosan polymer actuator with the thick electrode layer (0.7 mm) behaves with a larger blocking force (9.66 mN) and a smaller displacement (9.53 mm), and the lifetime under applied voltage of 3 V at 0.25 Hz is 1.75 times surpassed the thin one (0.3 mm). In addition to that, we investigate effects of membrane thicknesses on the electrical properties of chitosan polymer actuator, and figure out the relationship between the tensile strength of the membrane and the volume of the ionic solution in the electrolyte layer. GRAPHICAL ABSTRACT\",\"PeriodicalId\":20629,\"journal\":{\"name\":\"Polymer-Plastics Technology and Engineering\",\"volume\":\"43 1\",\"pages\":\"690 - 699\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer-Plastics Technology and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03602559.2017.1344853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1344853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4
摘要
壳聚糖基电活性纸是一种智能材料,具有重量轻、干燥、可生物降解、可持续性、输出位移大、驱动电压低等优点。然而,我们最近的研究发现,它的驱动性能对电解质层和电极层的膜厚度高度敏感。针对这一问题,本文介绍了一种由多壁碳纳米管、离子液体电极和聚合物负载壳聚糖制成的生物聚合物离子致动器。结果表明,厚电极层(0.7 mm)的壳聚糖聚合物致动器具有较大的阻挡力(9.66 mN)和较小的位移(9.53 mm),在3 V 0.25 Hz电压下的寿命是薄电极层(0.3 mm)的1.75倍。除此之外,我们还研究了膜厚度对壳聚糖聚合物致动器电性能的影响,并得出了膜的抗拉强度与电解质层中离子溶液体积的关系。图形抽象
Investigation into Effects of Membrane Thickness on Electromechanical Properties of Biopolymer Chitosan-Based Electroactive Paper
ABSTRACT Chitosan-based electroactive paper has been reported as a smart material, which has merits in terms of lightweight, dry condition, biodegradability, sustainability, large displacement output, and low actuation voltage. However, our recent investigations found its actuation performance is highly sensitive to the membrane thicknesses, both on the electrolyte layer and the electrode layer. Focused on this issue, in this paper, we introduce a biopolymer ionic actuator made by multiwalled carbon nanotube, ionic liquid electrode, and polymer-supported chitosan. As a result, we find that chitosan polymer actuator with the thick electrode layer (0.7 mm) behaves with a larger blocking force (9.66 mN) and a smaller displacement (9.53 mm), and the lifetime under applied voltage of 3 V at 0.25 Hz is 1.75 times surpassed the thin one (0.3 mm). In addition to that, we investigate effects of membrane thicknesses on the electrical properties of chitosan polymer actuator, and figure out the relationship between the tensile strength of the membrane and the volume of the ionic solution in the electrolyte layer. GRAPHICAL ABSTRACT