{"title":"利用变分自编码器在AWGN信道上对高斯源进行联合信路编码","authors":"Yashas Malur Saidutta, A. Abdi, F. Fekri","doi":"10.1109/ISIT.2019.8849476","DOIUrl":null,"url":null,"abstract":"In this paper, we study joint source-channel coding of gaussian sources over multiple AWGN channels where the source dimension is greater than the number of channels. We model our system as a Variational Autoencoder and show that its loss function takes up a form that is an upper bound on the optimization function got from rate-distortion theory. The constructed system employs two encoders that learn to split the source input space into almost half with no constraints. The system is jointly trained in a data-driven manner, end-to-end. We achieve state of the art results for certain configurations, some of which are 0.7dB better than previous works. We also showcase that the trained encoder/decoder is robust, i.e., even if the channel conditions change by +/-5dB, the performance of the system does not vary by more than 0.7dB w.r.t. a system trained at that channel condition. The trained system, to an extent, has the ability to generalize when a single input dimension is dropped and for some scenarios it is less than 1dB away from the system trained for that reduced dimension.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"1327-1331"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Joint Source-Channel Coding for Gaussian Sources over AWGN Channels using Variational Autoencoders\",\"authors\":\"Yashas Malur Saidutta, A. Abdi, F. Fekri\",\"doi\":\"10.1109/ISIT.2019.8849476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study joint source-channel coding of gaussian sources over multiple AWGN channels where the source dimension is greater than the number of channels. We model our system as a Variational Autoencoder and show that its loss function takes up a form that is an upper bound on the optimization function got from rate-distortion theory. The constructed system employs two encoders that learn to split the source input space into almost half with no constraints. The system is jointly trained in a data-driven manner, end-to-end. We achieve state of the art results for certain configurations, some of which are 0.7dB better than previous works. We also showcase that the trained encoder/decoder is robust, i.e., even if the channel conditions change by +/-5dB, the performance of the system does not vary by more than 0.7dB w.r.t. a system trained at that channel condition. The trained system, to an extent, has the ability to generalize when a single input dimension is dropped and for some scenarios it is less than 1dB away from the system trained for that reduced dimension.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"1 1\",\"pages\":\"1327-1331\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Source-Channel Coding for Gaussian Sources over AWGN Channels using Variational Autoencoders
In this paper, we study joint source-channel coding of gaussian sources over multiple AWGN channels where the source dimension is greater than the number of channels. We model our system as a Variational Autoencoder and show that its loss function takes up a form that is an upper bound on the optimization function got from rate-distortion theory. The constructed system employs two encoders that learn to split the source input space into almost half with no constraints. The system is jointly trained in a data-driven manner, end-to-end. We achieve state of the art results for certain configurations, some of which are 0.7dB better than previous works. We also showcase that the trained encoder/decoder is robust, i.e., even if the channel conditions change by +/-5dB, the performance of the system does not vary by more than 0.7dB w.r.t. a system trained at that channel condition. The trained system, to an extent, has the ability to generalize when a single input dimension is dropped and for some scenarios it is less than 1dB away from the system trained for that reduced dimension.