在系统文献综述中识别研究的挑战:组织增长和衰退主题的分析

IF 2.1 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Global Knowledge Memory and Communication Pub Date : 2023-07-18 DOI:10.1108/gkmc-03-2023-0098
R. Dantas, D. Fleck
{"title":"在系统文献综述中识别研究的挑战:组织增长和衰退主题的分析","authors":"R. Dantas, D. Fleck","doi":"10.1108/gkmc-03-2023-0098","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to check the fragmentation of knowledge across multiple sources of evidence, identifying, scrutinizing and outlining suggestions concerning the challenges researchers face when using multiple sources of data to identify studies.\n\n\nDesign/methodology/approach\nThis study produced a comprehensive database of 15,848 items from Scopus, Web of Science and EBSCO on the organizational growth and decline topics. The analyses carried out to check the fragmentation of scientific knowledge and the challenges in identifying studies have made use of the basic data frame functions in R’s language and the Bibliometrix and Corpus R’s packages.\n\n\nFindings\nThis study confirms the fragmentation of scientific knowledge as well as it identifies the following challenges: missing information in key fields, nonexistence of standards in terminology, limitations on data extraction, duplicates and multiple formats of cited reference. Additionally, it suggests practical coping procedures and advances implications for stakeholders and an agenda for future research.\n\n\nOriginality/value\nThis study provides valuable and practical examples with empirical confirmation of scientific knowledge fragmentation and offers an integrated view of many challenges in the process of identifying studies. Moreover, by offering suggestions to address these challenges, this study not only offers a practical guide to scientific researchers but also initiates a wider discussion regarding knowledge organizing in social sciences.\n","PeriodicalId":43718,"journal":{"name":"Global Knowledge Memory and Communication","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges in identifying studies to include in a systematic literature review: an analysis of the organizational growth and decline topics\",\"authors\":\"R. Dantas, D. Fleck\",\"doi\":\"10.1108/gkmc-03-2023-0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to check the fragmentation of knowledge across multiple sources of evidence, identifying, scrutinizing and outlining suggestions concerning the challenges researchers face when using multiple sources of data to identify studies.\\n\\n\\nDesign/methodology/approach\\nThis study produced a comprehensive database of 15,848 items from Scopus, Web of Science and EBSCO on the organizational growth and decline topics. The analyses carried out to check the fragmentation of scientific knowledge and the challenges in identifying studies have made use of the basic data frame functions in R’s language and the Bibliometrix and Corpus R’s packages.\\n\\n\\nFindings\\nThis study confirms the fragmentation of scientific knowledge as well as it identifies the following challenges: missing information in key fields, nonexistence of standards in terminology, limitations on data extraction, duplicates and multiple formats of cited reference. Additionally, it suggests practical coping procedures and advances implications for stakeholders and an agenda for future research.\\n\\n\\nOriginality/value\\nThis study provides valuable and practical examples with empirical confirmation of scientific knowledge fragmentation and offers an integrated view of many challenges in the process of identifying studies. Moreover, by offering suggestions to address these challenges, this study not only offers a practical guide to scientific researchers but also initiates a wider discussion regarding knowledge organizing in social sciences.\\n\",\"PeriodicalId\":43718,\"journal\":{\"name\":\"Global Knowledge Memory and Communication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Knowledge Memory and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/gkmc-03-2023-0098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Knowledge Memory and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/gkmc-03-2023-0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在检查跨多个证据来源的知识碎片化,识别、审查并概述有关研究人员在使用多个数据来源识别研究时面临的挑战的建议。设计/方法/方法本研究从Scopus、Web of Science和EBSCO中建立了一个关于组织成长和衰退主题的综合数据库,共15848个条目。为检查科学知识的碎片化和识别研究的挑战而进行的分析使用了R语言中的基本数据框架函数以及Bibliometrix和Corpus R的软件包。本研究证实了科学知识的碎片化,并指出了以下挑战:关键领域信息缺失,术语标准不存在,数据提取的局限性,引用文献的重复和多种格式。此外,它提出了实际的应对程序,并提出了对利益相关者的启示和未来研究的议程。原创性/价值本研究为科学知识碎片化的实证证实提供了有价值和实用的例子,并为识别研究过程中的许多挑战提供了一个综合的观点。此外,本研究提出了解决这些挑战的建议,不仅为科研人员提供了实践指导,而且引发了关于社会科学知识组织的更广泛的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Challenges in identifying studies to include in a systematic literature review: an analysis of the organizational growth and decline topics
Purpose This paper aims to check the fragmentation of knowledge across multiple sources of evidence, identifying, scrutinizing and outlining suggestions concerning the challenges researchers face when using multiple sources of data to identify studies. Design/methodology/approach This study produced a comprehensive database of 15,848 items from Scopus, Web of Science and EBSCO on the organizational growth and decline topics. The analyses carried out to check the fragmentation of scientific knowledge and the challenges in identifying studies have made use of the basic data frame functions in R’s language and the Bibliometrix and Corpus R’s packages. Findings This study confirms the fragmentation of scientific knowledge as well as it identifies the following challenges: missing information in key fields, nonexistence of standards in terminology, limitations on data extraction, duplicates and multiple formats of cited reference. Additionally, it suggests practical coping procedures and advances implications for stakeholders and an agenda for future research. Originality/value This study provides valuable and practical examples with empirical confirmation of scientific knowledge fragmentation and offers an integrated view of many challenges in the process of identifying studies. Moreover, by offering suggestions to address these challenges, this study not only offers a practical guide to scientific researchers but also initiates a wider discussion regarding knowledge organizing in social sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Knowledge Memory and Communication
Global Knowledge Memory and Communication INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
4.20
自引率
16.70%
发文量
77
期刊最新文献
Mapping covid-19 and transportation: a taxonomical study using bibliometric visualisation The persistence of print books: exploring language preference and format preference among Arabic-speaking library patrons in Jordan A checklist to publish collections as data in GLAM institutions A systematic literature review on the use of mobile phones to access library services and resources: challenges and benefits Citation analysis and mapping of genetics research in Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1