高粱双色叶鞘在包衣技术中的应用

J. Isaac, Kayode Ilesanmi Fasuba
{"title":"高粱双色叶鞘在包衣技术中的应用","authors":"J. Isaac, Kayode Ilesanmi Fasuba","doi":"10.1055/s-0041-1736235","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to investigate the potential use of aqueous extract of Sorghum bicolor leaf sheath (SBLS) as a coating agent for paracetamol tablets. The mechanical properties of the coated tablets were assessed using crushing strength and friability test, while the release properties of the tablet were evaluated using disintegration and dissolution tests. The physicochemical properties of the coated tablets did not show any striking differences when compared with the uncoated tablet as par compendium specifications, which formed the basis for performing further in vitro dissolution study. Our data showed that SBLS enhanced the hardness and friability of the tablets in a dose-dependent manner. Tablets coated with 3, 5, and 7.5% of SBLS disintegrated in 8.13, 6.25, and 4.13 minutes, respectively, while the uncoated tablet disintegrated in 0.7 minutes. Furthermore, 3, 5, and 7.5% of SBLS-coated tablets exhibited slower release of their active ingredient (releasing 21, 16, and 17%, respectively) than that of the uncoated tablet (releasing 40%) in 5 minutes. Besides, comparison between the dissolution profiles was successfully achieved using difference factor (f1) and similarity factor (f2). The apparent dissimilarity between our coated tablets and the uncoated one led to further study of convolution in vitro–in vivo correlation, with the aim to obtain data that converted into mathematical prediction of in vivo data. For all batches, the percent predictable errors of C max and T max were within the acceptable limit of no more than 10%. In summary, SBLS aqueous extract is a potential and protective coat agent for paracetamol tablets. The in vitro established dissolution of the coated tablets provided scientific information for the prediction of the in vivo plasma drug profile.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Use for Sorghum Bicolor Leaf Sheath in Coating Technology\",\"authors\":\"J. Isaac, Kayode Ilesanmi Fasuba\",\"doi\":\"10.1055/s-0041-1736235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aimed to investigate the potential use of aqueous extract of Sorghum bicolor leaf sheath (SBLS) as a coating agent for paracetamol tablets. The mechanical properties of the coated tablets were assessed using crushing strength and friability test, while the release properties of the tablet were evaluated using disintegration and dissolution tests. The physicochemical properties of the coated tablets did not show any striking differences when compared with the uncoated tablet as par compendium specifications, which formed the basis for performing further in vitro dissolution study. Our data showed that SBLS enhanced the hardness and friability of the tablets in a dose-dependent manner. Tablets coated with 3, 5, and 7.5% of SBLS disintegrated in 8.13, 6.25, and 4.13 minutes, respectively, while the uncoated tablet disintegrated in 0.7 minutes. Furthermore, 3, 5, and 7.5% of SBLS-coated tablets exhibited slower release of their active ingredient (releasing 21, 16, and 17%, respectively) than that of the uncoated tablet (releasing 40%) in 5 minutes. Besides, comparison between the dissolution profiles was successfully achieved using difference factor (f1) and similarity factor (f2). The apparent dissimilarity between our coated tablets and the uncoated one led to further study of convolution in vitro–in vivo correlation, with the aim to obtain data that converted into mathematical prediction of in vivo data. For all batches, the percent predictable errors of C max and T max were within the acceptable limit of no more than 10%. In summary, SBLS aqueous extract is a potential and protective coat agent for paracetamol tablets. The in vitro established dissolution of the coated tablets provided scientific information for the prediction of the in vivo plasma drug profile.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1736235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1736235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究旨在探讨高粱双色叶鞘水提物作为对乙酰氨基酚片包衣剂的可行性。采用压碎强度和脆性试验评价包衣片的力学性能,崩解度和溶出度试验评价包衣片的释放性能。按照药典标准,包衣片的理化性质与未包衣片无明显差异,为进一步进行体外溶出度研究奠定了基础。我们的数据显示,SBLS以剂量依赖的方式增强了片剂的硬度和脆度。包被3、5、7.5% SBLS的片剂崩解时间分别为8.13、6.25、4.13 min,未包被SBLS的片剂崩解时间为0.7 min。此外,3、5和7.5%的sbls包衣片在5分钟内释放活性成分(分别释放21、16和17%)比未包衣片(释放40%)慢。此外,利用差异因子(f1)和相似因子(f2)成功地对溶出曲线进行了比较。我们的包衣片与未包衣片之间的明显差异促使我们进一步研究卷积的体内外相关性,目的是获得数据,并将其转化为体内数据的数学预测。对于所有批次,cmax和tmax的可预测误差百分比都在不超过10%的可接受限度内。综上所述,SBLS水提物是一种潜在的对乙酰氨基酚片保护剂。体外溶出度的测定为体内血浆药物谱的预测提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Use for Sorghum Bicolor Leaf Sheath in Coating Technology
Abstract This study aimed to investigate the potential use of aqueous extract of Sorghum bicolor leaf sheath (SBLS) as a coating agent for paracetamol tablets. The mechanical properties of the coated tablets were assessed using crushing strength and friability test, while the release properties of the tablet were evaluated using disintegration and dissolution tests. The physicochemical properties of the coated tablets did not show any striking differences when compared with the uncoated tablet as par compendium specifications, which formed the basis for performing further in vitro dissolution study. Our data showed that SBLS enhanced the hardness and friability of the tablets in a dose-dependent manner. Tablets coated with 3, 5, and 7.5% of SBLS disintegrated in 8.13, 6.25, and 4.13 minutes, respectively, while the uncoated tablet disintegrated in 0.7 minutes. Furthermore, 3, 5, and 7.5% of SBLS-coated tablets exhibited slower release of their active ingredient (releasing 21, 16, and 17%, respectively) than that of the uncoated tablet (releasing 40%) in 5 minutes. Besides, comparison between the dissolution profiles was successfully achieved using difference factor (f1) and similarity factor (f2). The apparent dissimilarity between our coated tablets and the uncoated one led to further study of convolution in vitro–in vivo correlation, with the aim to obtain data that converted into mathematical prediction of in vivo data. For all batches, the percent predictable errors of C max and T max were within the acceptable limit of no more than 10%. In summary, SBLS aqueous extract is a potential and protective coat agent for paracetamol tablets. The in vitro established dissolution of the coated tablets provided scientific information for the prediction of the in vivo plasma drug profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1