{"title":"基于梯度的三元纹理模式自动面部表情识别","authors":"Faisal Ahmed, Emam Hossain","doi":"10.1155/2013/831747","DOIUrl":null,"url":null,"abstract":"Recognition of human expression from facial image is an interesting research area, which has received increasing attention in the recent years. A robust and effective facial feature descriptor is the key to designing a successful expression recognition system. Although much progress has been made, deriving a face feature descriptor that can perform consistently under changing environment is still a difficult and challenging task. In this paper, we present the gradient local ternary pattern (GLTP)—a discriminative local texture feature for representing facial expression. The proposed GLTP operator encodes the local texture of an image by computing the gradient magnitudes of the local neighborhood and quantizing those values in three discrimination levels. The location and occurrence information of the resulting micropatterns is then used as the face feature descriptor. The performance of the proposed method has been evaluated for the person-independent face expression recognition task. Experiments with prototypic expression images from the Cohn-Kanade (CK) face expression database validate that the GLTP feature descriptor can effectively encode the facial texture and thus achieves improved recognition performance than some well-known appearance-based facial features.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"9 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns\",\"authors\":\"Faisal Ahmed, Emam Hossain\",\"doi\":\"10.1155/2013/831747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of human expression from facial image is an interesting research area, which has received increasing attention in the recent years. A robust and effective facial feature descriptor is the key to designing a successful expression recognition system. Although much progress has been made, deriving a face feature descriptor that can perform consistently under changing environment is still a difficult and challenging task. In this paper, we present the gradient local ternary pattern (GLTP)—a discriminative local texture feature for representing facial expression. The proposed GLTP operator encodes the local texture of an image by computing the gradient magnitudes of the local neighborhood and quantizing those values in three discrimination levels. The location and occurrence information of the resulting micropatterns is then used as the face feature descriptor. The performance of the proposed method has been evaluated for the person-independent face expression recognition task. Experiments with prototypic expression images from the Cohn-Kanade (CK) face expression database validate that the GLTP feature descriptor can effectively encode the facial texture and thus achieves improved recognition performance than some well-known appearance-based facial features.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"9 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/831747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2013/831747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns
Recognition of human expression from facial image is an interesting research area, which has received increasing attention in the recent years. A robust and effective facial feature descriptor is the key to designing a successful expression recognition system. Although much progress has been made, deriving a face feature descriptor that can perform consistently under changing environment is still a difficult and challenging task. In this paper, we present the gradient local ternary pattern (GLTP)—a discriminative local texture feature for representing facial expression. The proposed GLTP operator encodes the local texture of an image by computing the gradient magnitudes of the local neighborhood and quantizing those values in three discrimination levels. The location and occurrence information of the resulting micropatterns is then used as the face feature descriptor. The performance of the proposed method has been evaluated for the person-independent face expression recognition task. Experiments with prototypic expression images from the Cohn-Kanade (CK) face expression database validate that the GLTP feature descriptor can effectively encode the facial texture and thus achieves improved recognition performance than some well-known appearance-based facial features.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.