视网膜疾病OCT扫描分类:自监督学习与迁移学习的比较研究

Saeed Shurrab, Yazan Shannak, R. Duwairi
{"title":"视网膜疾病OCT扫描分类:自监督学习与迁移学习的比较研究","authors":"Saeed Shurrab, Yazan Shannak, R. Duwairi","doi":"10.34028/iajit/20/3/8","DOIUrl":null,"url":null,"abstract":"Retina disorders are among the common types of eye disease that occur due to several reasons such as aging, diabetes and premature born. Besides, Optical Coherence Tomography (OCT) is a medical imaging method that serves as a vehicle for capturing volumetric scans of the human eye retina for diagnoses purposes. This research compared two pretraining approaches including Self-Supervised Learning (SSL) and Transfer Learning (TL) to train ResNet34 neural architecture aiming at building computer aided diagnoses tool for retina disorders recognition. In addition, the research methodology employs convolutional auto-encoder model as a generative SSL pretraining method. The research efforts are implemented on a dataset that contains 109,309 retina OCT images with three medical conditions including Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), DRUSEN as well as NORMAL condition. The research outcomes showed better performance in terms of overall accuracy, sensitivity and specificity, namely, 95.2%, 95.2% and 98.4% respectively for SSL ResNet34 in comparison to scores of 90.7%, 90.7% and 96.9% respectively for TL ResNet34. In addition, SSL pretraining approach showed significant reduction in the number of epochs required for training in comparison to both TL pretraining as well as the previous research performed on the same dataset with comparable performance.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":"28 1","pages":"357-367"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retina disorders classification via OCT scan: a comparative study between self-supervised learning and transfer learning\",\"authors\":\"Saeed Shurrab, Yazan Shannak, R. Duwairi\",\"doi\":\"10.34028/iajit/20/3/8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retina disorders are among the common types of eye disease that occur due to several reasons such as aging, diabetes and premature born. Besides, Optical Coherence Tomography (OCT) is a medical imaging method that serves as a vehicle for capturing volumetric scans of the human eye retina for diagnoses purposes. This research compared two pretraining approaches including Self-Supervised Learning (SSL) and Transfer Learning (TL) to train ResNet34 neural architecture aiming at building computer aided diagnoses tool for retina disorders recognition. In addition, the research methodology employs convolutional auto-encoder model as a generative SSL pretraining method. The research efforts are implemented on a dataset that contains 109,309 retina OCT images with three medical conditions including Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), DRUSEN as well as NORMAL condition. The research outcomes showed better performance in terms of overall accuracy, sensitivity and specificity, namely, 95.2%, 95.2% and 98.4% respectively for SSL ResNet34 in comparison to scores of 90.7%, 90.7% and 96.9% respectively for TL ResNet34. In addition, SSL pretraining approach showed significant reduction in the number of epochs required for training in comparison to both TL pretraining as well as the previous research performed on the same dataset with comparable performance.\",\"PeriodicalId\":13624,\"journal\":{\"name\":\"Int. Arab J. Inf. Technol.\",\"volume\":\"28 1\",\"pages\":\"357-367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. Arab J. Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34028/iajit/20/3/8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/3/8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视网膜疾病是由衰老、糖尿病和早产等多种原因引起的常见眼病之一。此外,光学相干断层扫描(OCT)是一种医学成像方法,可作为捕获人眼视网膜的体积扫描以用于诊断目的的工具。本研究比较了自监督学习(Self-Supervised Learning, SSL)和迁移学习(Transfer Learning, TL)两种预训练方法来训练ResNet34神经结构,旨在构建视网膜疾病识别的计算机辅助诊断工具。此外,研究方法采用卷积自编码器模型作为生成式SSL预训练方法。研究工作是在包含109,309张视网膜OCT图像的数据集上实施的,这些图像具有三种医疗条件,包括脉络膜新生血管(CNV)、糖尿病性黄斑水肿(DME)、DRUSEN以及正常状态。研究结果显示,SSL ResNet34的总体准确性、敏感性和特异性分别为95.2%、95.2%和98.4%,而TL ResNet34的总体准确性、敏感性和特异性分别为90.7%、90.7%和96.9%。此外,与TL预训练和之前在相同数据集上进行的研究相比,SSL预训练方法显示出训练所需的epoch数量显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retina disorders classification via OCT scan: a comparative study between self-supervised learning and transfer learning
Retina disorders are among the common types of eye disease that occur due to several reasons such as aging, diabetes and premature born. Besides, Optical Coherence Tomography (OCT) is a medical imaging method that serves as a vehicle for capturing volumetric scans of the human eye retina for diagnoses purposes. This research compared two pretraining approaches including Self-Supervised Learning (SSL) and Transfer Learning (TL) to train ResNet34 neural architecture aiming at building computer aided diagnoses tool for retina disorders recognition. In addition, the research methodology employs convolutional auto-encoder model as a generative SSL pretraining method. The research efforts are implemented on a dataset that contains 109,309 retina OCT images with three medical conditions including Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), DRUSEN as well as NORMAL condition. The research outcomes showed better performance in terms of overall accuracy, sensitivity and specificity, namely, 95.2%, 95.2% and 98.4% respectively for SSL ResNet34 in comparison to scores of 90.7%, 90.7% and 96.9% respectively for TL ResNet34. In addition, SSL pretraining approach showed significant reduction in the number of epochs required for training in comparison to both TL pretraining as well as the previous research performed on the same dataset with comparable performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Energy Efficient Harvesting Technique for SDWSN using RF Transmitters with MISO Beamforming Incorporating triple attention and multi-scale pyramid network for underwater image enhancement Generative adversarial networks with data augmentation and multiple penalty areas for image synthesis MAPNEWS: a framework for aggregating and organizing online news articles Deep learning based mobilenet and multi-head attention model for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1