语言模型的不可检测水印

Miranda Christ, S. Gunn, Or Zamir
{"title":"语言模型的不可检测水印","authors":"Miranda Christ, S. Gunn, Or Zamir","doi":"10.48550/arXiv.2306.09194","DOIUrl":null,"url":null,"abstract":"Recent advances in the capabilities of large language models such as GPT-4 have spurred increasing concern about our ability to detect AI-generated text. Prior works have suggested methods of embedding watermarks in model outputs, by noticeably altering the output distribution. We ask: Is it possible to introduce a watermark without incurring any detectable change to the output distribution? To this end we introduce a cryptographically-inspired notion of undetectable watermarks for language models. That is, watermarks can be detected only with the knowledge of a secret key; without the secret key, it is computationally intractable to distinguish watermarked outputs from those of the original model. In particular, it is impossible for a user to observe any degradation in the quality of the text. Crucially, watermarks should remain undetectable even when the user is allowed to adaptively query the model with arbitrarily chosen prompts. We construct undetectable watermarks based on the existence of one-way functions, a standard assumption in cryptography.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"8 1","pages":"763"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Undetectable Watermarks for Language Models\",\"authors\":\"Miranda Christ, S. Gunn, Or Zamir\",\"doi\":\"10.48550/arXiv.2306.09194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in the capabilities of large language models such as GPT-4 have spurred increasing concern about our ability to detect AI-generated text. Prior works have suggested methods of embedding watermarks in model outputs, by noticeably altering the output distribution. We ask: Is it possible to introduce a watermark without incurring any detectable change to the output distribution? To this end we introduce a cryptographically-inspired notion of undetectable watermarks for language models. That is, watermarks can be detected only with the knowledge of a secret key; without the secret key, it is computationally intractable to distinguish watermarked outputs from those of the original model. In particular, it is impossible for a user to observe any degradation in the quality of the text. Crucially, watermarks should remain undetectable even when the user is allowed to adaptively query the model with arbitrarily chosen prompts. We construct undetectable watermarks based on the existence of one-way functions, a standard assumption in cryptography.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"8 1\",\"pages\":\"763\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.09194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.09194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

最近在GPT-4等大型语言模型的能力方面取得的进展,引发了人们对我们检测人工智能生成文本的能力的越来越多的关注。先前的工作已经提出了在模型输出中嵌入水印的方法,通过显著改变输出分布。我们的问题是:是否有可能在不引起任何可检测到的输出分布变化的情况下引入水印?为此,我们引入了一种受密码学启发的语言模型不可检测水印的概念。也就是说,只有在知道密钥的情况下才能检测到水印;在没有密钥的情况下,在计算上难以区分带水印的输出和原始模型的输出。特别是,用户不可能观察到文本质量的任何下降。至关重要的是,即使允许用户使用任意选择的提示自适应地查询模型,水印也应该保持不可检测。我们基于单向函数的存在构造不可检测的水印,这是密码学中的一个标准假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Undetectable Watermarks for Language Models
Recent advances in the capabilities of large language models such as GPT-4 have spurred increasing concern about our ability to detect AI-generated text. Prior works have suggested methods of embedding watermarks in model outputs, by noticeably altering the output distribution. We ask: Is it possible to introduce a watermark without incurring any detectable change to the output distribution? To this end we introduce a cryptographically-inspired notion of undetectable watermarks for language models. That is, watermarks can be detected only with the knowledge of a secret key; without the secret key, it is computationally intractable to distinguish watermarked outputs from those of the original model. In particular, it is impossible for a user to observe any degradation in the quality of the text. Crucially, watermarks should remain undetectable even when the user is allowed to adaptively query the model with arbitrarily chosen prompts. We construct undetectable watermarks based on the existence of one-way functions, a standard assumption in cryptography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronous Distributed Key Generation without Broadcasts Optimizing and Implementing Fischlin's Transform for UC-Secure Zero-Knowledge A Long Tweak Goes a Long Way: High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers Efficient isochronous fixed-weight sampling with applications to NTRU Decentralized Multi-Client Functional Encryption with Strong Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1