M. S. Kumar, V. Keerthi, R.N. Anjnai, M. Sarma, V. Bothale
{"title":"机器学习方法在高光谱图像分类中的应用","authors":"M. S. Kumar, V. Keerthi, R.N. Anjnai, M. Sarma, V. Bothale","doi":"10.1109/InGARSS48198.2020.9358916","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms are outstanding predictive powerful tools for classification of hypserspectral images. In this paper we summarize the various classification techniques based on machine learning approaches for space borne hypserspectral images. Random Forest (RF), Support Vector Machine (SVM) and a deep learning technique, Convolution Neural Network (CNN) are explored on HySIS images. CNN shows great potential to yield high performance in hypserspectral image classification. 2-D and 3-D CNN techniques provided robust classification results when compared to RF, SVM methods.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"9 1","pages":"225-228"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evalution of Machine Learning Methods for Hyperspectral Image Classification\",\"authors\":\"M. S. Kumar, V. Keerthi, R.N. Anjnai, M. Sarma, V. Bothale\",\"doi\":\"10.1109/InGARSS48198.2020.9358916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms are outstanding predictive powerful tools for classification of hypserspectral images. In this paper we summarize the various classification techniques based on machine learning approaches for space borne hypserspectral images. Random Forest (RF), Support Vector Machine (SVM) and a deep learning technique, Convolution Neural Network (CNN) are explored on HySIS images. CNN shows great potential to yield high performance in hypserspectral image classification. 2-D and 3-D CNN techniques provided robust classification results when compared to RF, SVM methods.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"9 1\",\"pages\":\"225-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evalution of Machine Learning Methods for Hyperspectral Image Classification
Machine learning algorithms are outstanding predictive powerful tools for classification of hypserspectral images. In this paper we summarize the various classification techniques based on machine learning approaches for space borne hypserspectral images. Random Forest (RF), Support Vector Machine (SVM) and a deep learning technique, Convolution Neural Network (CNN) are explored on HySIS images. CNN shows great potential to yield high performance in hypserspectral image classification. 2-D and 3-D CNN techniques provided robust classification results when compared to RF, SVM methods.