语义决策内注意图卷积网络的端到端情感原因对提取

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2023-06-21 DOI:10.4018/ijswis.325063
Dianyuan Zhang, Zhenfang Zhu, Jiangtao Qi, Guangyuan Zhang, Linghui Zhong
{"title":"语义决策内注意图卷积网络的端到端情感原因对提取","authors":"Dianyuan Zhang, Zhenfang Zhu, Jiangtao Qi, Guangyuan Zhang, Linghui Zhong","doi":"10.4018/ijswis.325063","DOIUrl":null,"url":null,"abstract":"Emotion-cause pair extraction is an emergent natural language processing task; the target is to extract all pairs of emotion clauses and corresponding cause clauses from unannotated emotion text. Previous studies have employed two-step approaches. However, this research may lead to error propagation across stages. In addition, previous studies did not correctly handle the situation where emotion clauses and cause clauses are the same clauses. To overcome these issues, the authors first use a multitask learning model that is based on graph from the perspective of sorting, which can simultaneously extract emotion clauses, cause clauses and emotion-cause pairs via an end-to-end strategy. Then the authors propose to convert text into graph structured data, and process this scenario through a unique graph convolutional neural network. Finally, the authors design a semantic decision mechanism to address the scenario in which there are multiple emotion-cause pairs in a text.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"7 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Decision Internal-Attention Graph Convolutional Network for End-to-End Emotion-Cause Pair Extraction\",\"authors\":\"Dianyuan Zhang, Zhenfang Zhu, Jiangtao Qi, Guangyuan Zhang, Linghui Zhong\",\"doi\":\"10.4018/ijswis.325063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion-cause pair extraction is an emergent natural language processing task; the target is to extract all pairs of emotion clauses and corresponding cause clauses from unannotated emotion text. Previous studies have employed two-step approaches. However, this research may lead to error propagation across stages. In addition, previous studies did not correctly handle the situation where emotion clauses and cause clauses are the same clauses. To overcome these issues, the authors first use a multitask learning model that is based on graph from the perspective of sorting, which can simultaneously extract emotion clauses, cause clauses and emotion-cause pairs via an end-to-end strategy. Then the authors propose to convert text into graph structured data, and process this scenario through a unique graph convolutional neural network. Finally, the authors design a semantic decision mechanism to address the scenario in which there are multiple emotion-cause pairs in a text.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.325063\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.325063","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

情感原因对提取是一种紧急的自然语言处理任务;目标是从未注释的情感文本中提取出所有对的情感子句和相应的原因子句。以前的研究采用了两步法。然而,这种研究可能导致错误跨阶段传播。此外,以往的研究没有正确处理情感分句和原因分句是同一分句的情况。为了克服这些问题,作者首先从排序的角度使用了基于图的多任务学习模型,该模型可以通过端到端策略同时提取情感子句、原因子句和情感-原因对。然后,作者提出将文本转换为图形结构化数据,并通过独特的图形卷积神经网络处理这一场景。最后,作者设计了一种语义决策机制来解决文本中存在多个情感-原因对的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Decision Internal-Attention Graph Convolutional Network for End-to-End Emotion-Cause Pair Extraction
Emotion-cause pair extraction is an emergent natural language processing task; the target is to extract all pairs of emotion clauses and corresponding cause clauses from unannotated emotion text. Previous studies have employed two-step approaches. However, this research may lead to error propagation across stages. In addition, previous studies did not correctly handle the situation where emotion clauses and cause clauses are the same clauses. To overcome these issues, the authors first use a multitask learning model that is based on graph from the perspective of sorting, which can simultaneously extract emotion clauses, cause clauses and emotion-cause pairs via an end-to-end strategy. Then the authors propose to convert text into graph structured data, and process this scenario through a unique graph convolutional neural network. Finally, the authors design a semantic decision mechanism to address the scenario in which there are multiple emotion-cause pairs in a text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1