B. Bestelmeyer, Joel R. Brown, K. Havstad, R. Alexander, G. Chavez, J. Herrick
{"title":"牧场状态与过渡模型的开发与应用。","authors":"B. Bestelmeyer, Joel R. Brown, K. Havstad, R. Alexander, G. Chavez, J. Herrick","doi":"10.2458/AZU_JRM_V56I2_BESTELMEYER","DOIUrl":null,"url":null,"abstract":"State-and-transition models have received a great deal of attention since the introduction of the concept to range management in 1989. Nonetheless, only recently have sets of state-and-transition models been produced thatcan be used by agency personnel and private citizens, and there is little guidance available for developing and interpreting models. Based upon our experiences developing models for the state of New Mexico, we address the following questions: 1) how is information assembled to create site-specific models for entire regions, 2) what ecological issues should be considered in model development and classification, and 3) how should models be used? We review the general structure of state-and-transition models, emphasizing the distinction between changes among communities within states (pathways) that are reversible with changes in climate and \"facilitating practices\" (e.g. grazing management), and changes among states (transitions) that are reversible only with \"accelerating practices\" such as seeding, shrub control, or the recovery of soil stability and historical hydrologic function. Both pathways and transitions occur, so these models are complementary. Ecological sites and the climatically-defined regions within which they occur (land resource units) serve as a framework for developing and selecting models. We illustrate the importance of clearly delineating ecological sites to produce models and describe how we have dealt with poorly-delineated sites. Producing specific models requires an understanding of the multiple ecological mechanisms underlying transitions. We show how models can represent and distinguish alternative and complementary hypotheses for transitions. Although there may be several mechanisms underlying transitions, they tend to fall within discrete categories based upon a few, fundamental ecological processes and their relation-ships can be readily understood. A knowledge of mechanisms is closely related to the use of ecological indicators to anticipate transitions. We conclude that models should include 1) reference values for quantitative indicators, 2) lists of key indicators and descriptions of changes in them that suggest an approach to a transition, and 3) a rigorous documentation of the theory and assumptions (and their alternatives) underlying the structure of each model.","PeriodicalId":16918,"journal":{"name":"Journal of Range Management","volume":"16 1","pages":"114-126"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"293","resultStr":"{\"title\":\"Development and use of state-and-transition models for rangelands.\",\"authors\":\"B. Bestelmeyer, Joel R. Brown, K. Havstad, R. Alexander, G. Chavez, J. Herrick\",\"doi\":\"10.2458/AZU_JRM_V56I2_BESTELMEYER\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-and-transition models have received a great deal of attention since the introduction of the concept to range management in 1989. Nonetheless, only recently have sets of state-and-transition models been produced thatcan be used by agency personnel and private citizens, and there is little guidance available for developing and interpreting models. Based upon our experiences developing models for the state of New Mexico, we address the following questions: 1) how is information assembled to create site-specific models for entire regions, 2) what ecological issues should be considered in model development and classification, and 3) how should models be used? We review the general structure of state-and-transition models, emphasizing the distinction between changes among communities within states (pathways) that are reversible with changes in climate and \\\"facilitating practices\\\" (e.g. grazing management), and changes among states (transitions) that are reversible only with \\\"accelerating practices\\\" such as seeding, shrub control, or the recovery of soil stability and historical hydrologic function. Both pathways and transitions occur, so these models are complementary. Ecological sites and the climatically-defined regions within which they occur (land resource units) serve as a framework for developing and selecting models. We illustrate the importance of clearly delineating ecological sites to produce models and describe how we have dealt with poorly-delineated sites. Producing specific models requires an understanding of the multiple ecological mechanisms underlying transitions. We show how models can represent and distinguish alternative and complementary hypotheses for transitions. Although there may be several mechanisms underlying transitions, they tend to fall within discrete categories based upon a few, fundamental ecological processes and their relation-ships can be readily understood. A knowledge of mechanisms is closely related to the use of ecological indicators to anticipate transitions. We conclude that models should include 1) reference values for quantitative indicators, 2) lists of key indicators and descriptions of changes in them that suggest an approach to a transition, and 3) a rigorous documentation of the theory and assumptions (and their alternatives) underlying the structure of each model.\",\"PeriodicalId\":16918,\"journal\":{\"name\":\"Journal of Range Management\",\"volume\":\"16 1\",\"pages\":\"114-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"293\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Range Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2458/AZU_JRM_V56I2_BESTELMEYER\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Range Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2458/AZU_JRM_V56I2_BESTELMEYER","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and use of state-and-transition models for rangelands.
State-and-transition models have received a great deal of attention since the introduction of the concept to range management in 1989. Nonetheless, only recently have sets of state-and-transition models been produced thatcan be used by agency personnel and private citizens, and there is little guidance available for developing and interpreting models. Based upon our experiences developing models for the state of New Mexico, we address the following questions: 1) how is information assembled to create site-specific models for entire regions, 2) what ecological issues should be considered in model development and classification, and 3) how should models be used? We review the general structure of state-and-transition models, emphasizing the distinction between changes among communities within states (pathways) that are reversible with changes in climate and "facilitating practices" (e.g. grazing management), and changes among states (transitions) that are reversible only with "accelerating practices" such as seeding, shrub control, or the recovery of soil stability and historical hydrologic function. Both pathways and transitions occur, so these models are complementary. Ecological sites and the climatically-defined regions within which they occur (land resource units) serve as a framework for developing and selecting models. We illustrate the importance of clearly delineating ecological sites to produce models and describe how we have dealt with poorly-delineated sites. Producing specific models requires an understanding of the multiple ecological mechanisms underlying transitions. We show how models can represent and distinguish alternative and complementary hypotheses for transitions. Although there may be several mechanisms underlying transitions, they tend to fall within discrete categories based upon a few, fundamental ecological processes and their relation-ships can be readily understood. A knowledge of mechanisms is closely related to the use of ecological indicators to anticipate transitions. We conclude that models should include 1) reference values for quantitative indicators, 2) lists of key indicators and descriptions of changes in them that suggest an approach to a transition, and 3) a rigorous documentation of the theory and assumptions (and their alternatives) underlying the structure of each model.