基于强化学习的弹道导弹机动突防

Chaojie Yang, Jiang Wu, Guoqing Liu, Yuncan Zhang
{"title":"基于强化学习的弹道导弹机动突防","authors":"Chaojie Yang, Jiang Wu, Guoqing Liu, Yuncan Zhang","doi":"10.1109/GNCC42960.2018.9018872","DOIUrl":null,"url":null,"abstract":"Ballistic missiles, as the main weapon for long-range precision fire strikes, reflect the military development level and strategic capabilities of a country. This paper focuses on the midcourse penetration process of ballistic missile maneuvers. Assuming that the interceptor missile uses a proportional guidance strategy, the reinforcement learning methods is used to train network models. The method avoids the need for traditional control theory methods to establish precise mathematical models based on controlled objects, and this reduces the difficulty of the performance model to solve the optimal analytical solution. The use of State space discretization reduce the action space, and improves the network learning efficiency. Finally, the simulation proves that reinforcement learning can greatly increase the miss distance of missile maneuver penetration.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ballistic Missile Maneuver Penetration Based on Reinforcement Learning\",\"authors\":\"Chaojie Yang, Jiang Wu, Guoqing Liu, Yuncan Zhang\",\"doi\":\"10.1109/GNCC42960.2018.9018872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ballistic missiles, as the main weapon for long-range precision fire strikes, reflect the military development level and strategic capabilities of a country. This paper focuses on the midcourse penetration process of ballistic missile maneuvers. Assuming that the interceptor missile uses a proportional guidance strategy, the reinforcement learning methods is used to train network models. The method avoids the need for traditional control theory methods to establish precise mathematical models based on controlled objects, and this reduces the difficulty of the performance model to solve the optimal analytical solution. The use of State space discretization reduce the action space, and improves the network learning efficiency. Finally, the simulation proves that reinforcement learning can greatly increase the miss distance of missile maneuver penetration.\",\"PeriodicalId\":6623,\"journal\":{\"name\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"36 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GNCC42960.2018.9018872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9018872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

弹道导弹作为远程精确火力打击的主要武器,反映了一个国家的军事发展水平和战略能力。本文主要研究弹道导弹中段突防过程。假设拦截导弹采用比例制导策略,采用强化学习方法训练网络模型。该方法避免了传统控制理论方法需要基于被控对象建立精确的数学模型,降低了性能模型求解最优解析解的难度。利用状态空间离散化减小了网络的动作空间,提高了网络的学习效率。最后,通过仿真验证了强化学习可以大大提高导弹机动突防的脱靶量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ballistic Missile Maneuver Penetration Based on Reinforcement Learning
Ballistic missiles, as the main weapon for long-range precision fire strikes, reflect the military development level and strategic capabilities of a country. This paper focuses on the midcourse penetration process of ballistic missile maneuvers. Assuming that the interceptor missile uses a proportional guidance strategy, the reinforcement learning methods is used to train network models. The method avoids the need for traditional control theory methods to establish precise mathematical models based on controlled objects, and this reduces the difficulty of the performance model to solve the optimal analytical solution. The use of State space discretization reduce the action space, and improves the network learning efficiency. Finally, the simulation proves that reinforcement learning can greatly increase the miss distance of missile maneuver penetration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sliding-Mode Disturbance Observer-Based Nonlinear Control for Unmanned Dual-Arm Aerial Manipulator Subject to State Constraints A Cloud Detection Method for Landsat 8 Satellite Remote Sensing Images Based on Improved CDNet Model Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning Wind and Actuator Fault Estimation for a Quadrotor UAV Based on Two-Stage Particle Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1