FDM加工条件对装配卡合特性的影响

Hiroyuki Taguchi, Yohei Kunimatsu, H. Narahara
{"title":"FDM加工条件对装配卡合特性的影响","authors":"Hiroyuki Taguchi, Yohei Kunimatsu, H. Narahara","doi":"10.20965/ijat.2023.p0326","DOIUrl":null,"url":null,"abstract":"Snap-fit allows plastic products to have assembly and disassembly capabilities without the use of screws, bolts, or other additional parts. For this reason, snap-fit is used in all kinds of plastic products from stationery to automotive parts. Because the mechanical and other functions of a snap-fit are greatly affected by its shape and material properties, it is desirable to fully evaluate them at the design stage. In addition, as the assembly and disassembly of products by snap-fit is generally performed by people, it is important to evaluate not only virtually but also with actual plastic parts. Therefore, there is a strong need to make a prototype and evaluate the feel of the product during assembling and disassembling, before finalizing on the shape and materials. In the past, making precise prototype required expensive molds, but in recent years, additive manufacturing has made it possible to make prototype efficiently and at low cost. In additive manufacturing, fused deposition modeling (FDM) is considered suitable for snap-fit prototype because it can use the same materials as mass-produced products. Thus, it may be possible to make a snap-fit prototype with rigidity, strength, and other characteristics similar to those of mass-produced products. However, FDM has various processing conditions such as tool path, nozzle temperature, and height of one layer. They are expected to have a significant effect on the snap-fit characteristics. Snap-fit is required to meet various requirements depending on the plastic products. The requirements can be divided into three major categories: in assembly, in disassembly, and when to use. In this study, we investigated the effect of FDM processing conditions on snap-fit characteristic in assembly.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"16 1","pages":"326-334"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of FDM Processing Conditions on Snap-Fit Characteristic in Assembly\",\"authors\":\"Hiroyuki Taguchi, Yohei Kunimatsu, H. Narahara\",\"doi\":\"10.20965/ijat.2023.p0326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snap-fit allows plastic products to have assembly and disassembly capabilities without the use of screws, bolts, or other additional parts. For this reason, snap-fit is used in all kinds of plastic products from stationery to automotive parts. Because the mechanical and other functions of a snap-fit are greatly affected by its shape and material properties, it is desirable to fully evaluate them at the design stage. In addition, as the assembly and disassembly of products by snap-fit is generally performed by people, it is important to evaluate not only virtually but also with actual plastic parts. Therefore, there is a strong need to make a prototype and evaluate the feel of the product during assembling and disassembling, before finalizing on the shape and materials. In the past, making precise prototype required expensive molds, but in recent years, additive manufacturing has made it possible to make prototype efficiently and at low cost. In additive manufacturing, fused deposition modeling (FDM) is considered suitable for snap-fit prototype because it can use the same materials as mass-produced products. Thus, it may be possible to make a snap-fit prototype with rigidity, strength, and other characteristics similar to those of mass-produced products. However, FDM has various processing conditions such as tool path, nozzle temperature, and height of one layer. They are expected to have a significant effect on the snap-fit characteristics. Snap-fit is required to meet various requirements depending on the plastic products. The requirements can be divided into three major categories: in assembly, in disassembly, and when to use. In this study, we investigated the effect of FDM processing conditions on snap-fit characteristic in assembly.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"16 1\",\"pages\":\"326-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2023.p0326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2023.p0326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Snap-fit允许塑料产品具有组装和拆卸能力,而无需使用螺钉,螺栓或其他额外部件。因此,从文具到汽车零部件,各种塑料产品都使用了卡扣式贴合。由于卡扣配合的机械和其他功能受其形状和材料特性的影响很大,因此希望在设计阶段对其进行充分评估。此外,由于产品的拼装和拆卸通常是由人来完成的,因此不仅要进行虚拟评估,还要用实际的塑料部件进行评估。因此,在最终确定形状和材料之前,非常有必要在组装和拆卸过程中制作原型并评估产品的感觉。在过去,制作精确的原型需要昂贵的模具,但近年来,增材制造使得以低成本高效地制作原型成为可能。在增材制造中,熔融沉积建模(FDM)被认为适合于卡扣式原型,因为它可以使用与批量生产产品相同的材料。因此,有可能制造出具有刚性、强度和其他类似于批量生产产品的特性的卡扣式原型。然而,FDM具有各种加工条件,如刀具路径,喷嘴温度和一层高度。预计它们将对卡扣贴合特性产生重大影响。根据塑料产品的不同,需要Snap-fit来满足各种要求。这些要求可分为三大类:在装配时、在拆卸时和在使用时。在本研究中,我们研究了FDM加工条件对装配中卡合特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of FDM Processing Conditions on Snap-Fit Characteristic in Assembly
Snap-fit allows plastic products to have assembly and disassembly capabilities without the use of screws, bolts, or other additional parts. For this reason, snap-fit is used in all kinds of plastic products from stationery to automotive parts. Because the mechanical and other functions of a snap-fit are greatly affected by its shape and material properties, it is desirable to fully evaluate them at the design stage. In addition, as the assembly and disassembly of products by snap-fit is generally performed by people, it is important to evaluate not only virtually but also with actual plastic parts. Therefore, there is a strong need to make a prototype and evaluate the feel of the product during assembling and disassembling, before finalizing on the shape and materials. In the past, making precise prototype required expensive molds, but in recent years, additive manufacturing has made it possible to make prototype efficiently and at low cost. In additive manufacturing, fused deposition modeling (FDM) is considered suitable for snap-fit prototype because it can use the same materials as mass-produced products. Thus, it may be possible to make a snap-fit prototype with rigidity, strength, and other characteristics similar to those of mass-produced products. However, FDM has various processing conditions such as tool path, nozzle temperature, and height of one layer. They are expected to have a significant effect on the snap-fit characteristics. Snap-fit is required to meet various requirements depending on the plastic products. The requirements can be divided into three major categories: in assembly, in disassembly, and when to use. In this study, we investigated the effect of FDM processing conditions on snap-fit characteristic in assembly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1