带自愈保护层的钢筋混凝土梁的结构性能

Shanlin He, M. Luković, H. Jonkers, E. Schlangen
{"title":"带自愈保护层的钢筋混凝土梁的结构性能","authors":"Shanlin He, M. Luković, H. Jonkers, E. Schlangen","doi":"10.1051/matecconf/202337808004","DOIUrl":null,"url":null,"abstract":"In the current study, experiments were carried out to investigate the structural performance of reinforced concrete (RC) beams with a self-healing cover zone. The cover zone consists of a 1.5-cm-thick layer of bacteria-embedded strain hardening cementitious composite (SHCC) for a combination of crack width control and crack healing. The aim is to bring together two emerging technologies (i.e., self-healing and strain-hardening) that show great potential for realizing highly efficient concrete structures. RC beam without the self-healing cover was also prepared as the control specimen for comparison purposes. The experimental program includes loading the beams to failure in four-point bending configuration and sawing the beams to segments for crack pattern analysis and crack healing. Results show that the beams with selfhealing cover exhibited a 45-60% improvement in structural capacity. The crack patterns of the hybrid beams were also largely modified. While the reference beam formed only a few major cracks, the hybrid beams formed around 40 fine cracks in the constant bending moment region with an average crack width smaller than 0.2 mm even at maximum load. By having an improved cracking behavior and an enhanced self-healing capacity, it is expected that the beams with a self-healing cover will possess an extended service life at the expense of minimal additional cost.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural performance of reinforced concrete beams with self-healing cover zone\",\"authors\":\"Shanlin He, M. Luković, H. Jonkers, E. Schlangen\",\"doi\":\"10.1051/matecconf/202337808004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current study, experiments were carried out to investigate the structural performance of reinforced concrete (RC) beams with a self-healing cover zone. The cover zone consists of a 1.5-cm-thick layer of bacteria-embedded strain hardening cementitious composite (SHCC) for a combination of crack width control and crack healing. The aim is to bring together two emerging technologies (i.e., self-healing and strain-hardening) that show great potential for realizing highly efficient concrete structures. RC beam without the self-healing cover was also prepared as the control specimen for comparison purposes. The experimental program includes loading the beams to failure in four-point bending configuration and sawing the beams to segments for crack pattern analysis and crack healing. Results show that the beams with selfhealing cover exhibited a 45-60% improvement in structural capacity. The crack patterns of the hybrid beams were also largely modified. While the reference beam formed only a few major cracks, the hybrid beams formed around 40 fine cracks in the constant bending moment region with an average crack width smaller than 0.2 mm even at maximum load. By having an improved cracking behavior and an enhanced self-healing capacity, it is expected that the beams with a self-healing cover will possess an extended service life at the expense of minimal additional cost.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337808004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337808004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,对具有自愈覆盖区的钢筋混凝土梁的结构性能进行了试验研究。覆盖区由1.5 cm厚的细菌包埋应变硬化胶凝复合材料(SHCC)组成,用于裂缝宽度控制和裂缝愈合的结合。其目的是将两种新兴技术(即自愈和应变硬化)结合在一起,这两种技术在实现高效混凝土结构方面显示出巨大的潜力。不带自愈盖的RC梁也作为对照试件进行对比。实验程序包括将梁加载到四点弯曲状态,并将梁锯成段进行裂纹模式分析和裂纹修复。结果表明,自愈盖梁的结构承载力提高了45 ~ 60%。混合梁的裂缝形态也得到了很大的改变。参考梁仅形成少量大裂缝,而混合梁在恒弯矩区形成约40条细裂缝,即使在最大荷载下平均裂缝宽度小于0.2 mm。由于具有改善的开裂行为和增强的自愈能力,预计具有自愈盖板的梁将以最小的额外成本为代价延长使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural performance of reinforced concrete beams with self-healing cover zone
In the current study, experiments were carried out to investigate the structural performance of reinforced concrete (RC) beams with a self-healing cover zone. The cover zone consists of a 1.5-cm-thick layer of bacteria-embedded strain hardening cementitious composite (SHCC) for a combination of crack width control and crack healing. The aim is to bring together two emerging technologies (i.e., self-healing and strain-hardening) that show great potential for realizing highly efficient concrete structures. RC beam without the self-healing cover was also prepared as the control specimen for comparison purposes. The experimental program includes loading the beams to failure in four-point bending configuration and sawing the beams to segments for crack pattern analysis and crack healing. Results show that the beams with selfhealing cover exhibited a 45-60% improvement in structural capacity. The crack patterns of the hybrid beams were also largely modified. While the reference beam formed only a few major cracks, the hybrid beams formed around 40 fine cracks in the constant bending moment region with an average crack width smaller than 0.2 mm even at maximum load. By having an improved cracking behavior and an enhanced self-healing capacity, it is expected that the beams with a self-healing cover will possess an extended service life at the expense of minimal additional cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
期刊最新文献
Classification of intracranial hemorrhage (CT) images using CNN-LSTM method and image-based GLCM features Study of pathways to reduce the energy consumption of the CO2 capture process by absorption-regeneration Optimizations of the internal structure of the reel of a double rope winder The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine Physicochemical studies of composite coatings during accelerated tests for atmospheric corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1