特征矩阵翻译在生物数据集分类中的作用

Hao Jiang, W. Ching
{"title":"特征矩阵翻译在生物数据集分类中的作用","authors":"Hao Jiang, W. Ching","doi":"10.1109/BIBM.2012.6392701","DOIUrl":null,"url":null,"abstract":"Driven by the challenge of integrating large amount of experimental data obtained from biological research, computational biology and bioinformatics are growing rapidly. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular tools. In the perspective of kernel matrix, a technique namely Eigen-matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy owns a lot of nice properties while the nature of which needs further exploration. We propose that its importance lies in the dimension reduction of predictor attributes within the data set. This can therefore serve as a novel perspective for future research in dimension reduction problems.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The role of Eigen-matrix translation in classification of biological datasets\",\"authors\":\"Hao Jiang, W. Ching\",\"doi\":\"10.1109/BIBM.2012.6392701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the challenge of integrating large amount of experimental data obtained from biological research, computational biology and bioinformatics are growing rapidly. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular tools. In the perspective of kernel matrix, a technique namely Eigen-matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy owns a lot of nice properties while the nature of which needs further exploration. We propose that its importance lies in the dimension reduction of predictor attributes within the data set. This can therefore serve as a novel perspective for future research in dimension reduction problems.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2012.6392701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在整合从生物学研究中获得的大量实验数据的挑战的驱动下,计算生物学和生物信息学正在迅速发展。机器学习方法,特别是核方法与支持向量机(svm)是非常流行的工具。从核矩阵的角度出发,引入特征矩阵翻译技术对蛋白质数据进行分类。特征矩阵翻译策略具有许多优良的性质,但其性质有待进一步探讨。我们认为它的重要性在于数据集中预测属性的降维。因此,这可以为未来降维问题的研究提供一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of Eigen-matrix translation in classification of biological datasets
Driven by the challenge of integrating large amount of experimental data obtained from biological research, computational biology and bioinformatics are growing rapidly. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular tools. In the perspective of kernel matrix, a technique namely Eigen-matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy owns a lot of nice properties while the nature of which needs further exploration. We propose that its importance lies in the dimension reduction of predictor attributes within the data set. This can therefore serve as a novel perspective for future research in dimension reduction problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1