AI Illustrator:基于生成对抗网络的艺术插图生成

Zihan Chen, Lianghong Chen, Zhiyuan Zhao, Yue Wang
{"title":"AI Illustrator:基于生成对抗网络的艺术插图生成","authors":"Zihan Chen, Lianghong Chen, Zhiyuan Zhao, Yue Wang","doi":"10.1109/ICIVC50857.2020.9177494","DOIUrl":null,"url":null,"abstract":"In recent years, people's pursuit of art has been on the rise. People want computers to be able to create artistic paintings based on descriptions. In this paper, we proposed a novel project, Painting Creator, which uses deep learning technology to enable the computer to generate artistic illustrations from a short piece of text. Our scheme includes two models, image generation model and style transfer model. In the real image generation model, inspired by the application of stack generative adversarial networks in text to image generation, we proposed an improved model, IStackGAN, to solve the problem of image generation. We added a classifier based on the original model and added image structure loss and feature extraction loss to improve the performance of the generator. The generator network can get additional hidden information from the classification information to produce better pictures. The loss of image structure can force the generator to restore the real image, and the loss of feature extraction can verify whether the generator network has extracted the features of the real image set. For the style transfer model, we improved the generator based on the original cycle generative adversarial networks and used the residual block to improve the stability and performance of the u-net generator. To improve the performance of the generator, we also added the cycle consistent loss with MS-SSIM. The experimental results show that our model is improved significantly based on the original paper, and the generated pictures are more vivid in detail, and pictures after the style transfer are more artistic to watch.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"69 1","pages":"155-159"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI Illustrator: Art Illustration Generation Based on Generative Adversarial Network\",\"authors\":\"Zihan Chen, Lianghong Chen, Zhiyuan Zhao, Yue Wang\",\"doi\":\"10.1109/ICIVC50857.2020.9177494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, people's pursuit of art has been on the rise. People want computers to be able to create artistic paintings based on descriptions. In this paper, we proposed a novel project, Painting Creator, which uses deep learning technology to enable the computer to generate artistic illustrations from a short piece of text. Our scheme includes two models, image generation model and style transfer model. In the real image generation model, inspired by the application of stack generative adversarial networks in text to image generation, we proposed an improved model, IStackGAN, to solve the problem of image generation. We added a classifier based on the original model and added image structure loss and feature extraction loss to improve the performance of the generator. The generator network can get additional hidden information from the classification information to produce better pictures. The loss of image structure can force the generator to restore the real image, and the loss of feature extraction can verify whether the generator network has extracted the features of the real image set. For the style transfer model, we improved the generator based on the original cycle generative adversarial networks and used the residual block to improve the stability and performance of the u-net generator. To improve the performance of the generator, we also added the cycle consistent loss with MS-SSIM. The experimental results show that our model is improved significantly based on the original paper, and the generated pictures are more vivid in detail, and pictures after the style transfer are more artistic to watch.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"69 1\",\"pages\":\"155-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,人们对艺术的追求一直在上升。人们希望计算机能够根据描述来创作艺术绘画。在本文中,我们提出了一个新颖的项目,Painting Creator,它使用深度学习技术使计算机能够从一小段文本中生成艺术插图。我们的方案包括两个模型,图像生成模型和风格迁移模型。在真实图像生成模型中,受文本中的堆栈生成对抗网络应用于图像生成的启发,我们提出了一种改进的模型IStackGAN来解决图像生成问题。我们在原有模型的基础上增加了分类器,并增加了图像结构损失和特征提取损失,提高了生成器的性能。生成器网络可以从分类信息中获取额外的隐藏信息,从而生成更好的图像。图像结构的丢失可以迫使生成器还原真实图像,特征提取的丢失可以验证生成器网络是否提取了真实图像集的特征。对于风格迁移模型,我们在原始循环生成对抗网络的基础上改进了生成器,并使用残差块来提高u-net生成器的稳定性和性能。为了提高发生器的性能,我们还增加了MS-SSIM的周期一致损耗。实验结果表明,我们的模型在原论文的基础上有了明显的改进,生成的图片细节更加生动,风格转换后的图片更具观赏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI Illustrator: Art Illustration Generation Based on Generative Adversarial Network
In recent years, people's pursuit of art has been on the rise. People want computers to be able to create artistic paintings based on descriptions. In this paper, we proposed a novel project, Painting Creator, which uses deep learning technology to enable the computer to generate artistic illustrations from a short piece of text. Our scheme includes two models, image generation model and style transfer model. In the real image generation model, inspired by the application of stack generative adversarial networks in text to image generation, we proposed an improved model, IStackGAN, to solve the problem of image generation. We added a classifier based on the original model and added image structure loss and feature extraction loss to improve the performance of the generator. The generator network can get additional hidden information from the classification information to produce better pictures. The loss of image structure can force the generator to restore the real image, and the loss of feature extraction can verify whether the generator network has extracted the features of the real image set. For the style transfer model, we improved the generator based on the original cycle generative adversarial networks and used the residual block to improve the stability and performance of the u-net generator. To improve the performance of the generator, we also added the cycle consistent loss with MS-SSIM. The experimental results show that our model is improved significantly based on the original paper, and the generated pictures are more vivid in detail, and pictures after the style transfer are more artistic to watch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Multi-object Tracking with Siamese Network and Optical Flow Research on Product Style Design Based on Genetic Algorithm Super-Resolution Reconstruction Algorithm of Target Image Based on Learning Background Air Quality Inference with Deep Convolutional Conditional Random Field Feature Point Extraction and Matching Method Based on Akaze in Illumination Invariant Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1