{"title":"基于频率特征分离的企业信息系统中目标检测的轻量级实时系统","authors":"YiHeng Wu, JianXin Chen","doi":"10.4018/ijswis.330015","DOIUrl":null,"url":null,"abstract":"In the domain of target detection in mobile and embedded devices, neural network model inference speed is a crucial metric. This paper introduces YOLO-FLNet, a lightweight algorithm for detecting people in open scenes. The model utilizes the DFEM structure to capture and process high-frequency and low-frequency information in the feature map. Additionally, the VoV-DFEM structure, based on the concept of one-shot aggregation, enhances feature aggregation from different scales and frequencies in the backbone network. To validate its performance, experiments were conducted using publicly available datasets on a computer with dedicated GPUs. As a result, compared to YOLOv7-tiny, YOLO-FLNet achieved a 0.3% mAP@0.5 improvement, reduced parameter size by 52.9%, and increased inference speed by 30.2%. These characteristics make it valuable for person detection in engineering domains, providing theoretical guidance for lightweight models in edge computing.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"69 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Real-Time System for Object Detection in Enterprise Information Systems for Frequency-Based Feature Separation\",\"authors\":\"YiHeng Wu, JianXin Chen\",\"doi\":\"10.4018/ijswis.330015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the domain of target detection in mobile and embedded devices, neural network model inference speed is a crucial metric. This paper introduces YOLO-FLNet, a lightweight algorithm for detecting people in open scenes. The model utilizes the DFEM structure to capture and process high-frequency and low-frequency information in the feature map. Additionally, the VoV-DFEM structure, based on the concept of one-shot aggregation, enhances feature aggregation from different scales and frequencies in the backbone network. To validate its performance, experiments were conducted using publicly available datasets on a computer with dedicated GPUs. As a result, compared to YOLOv7-tiny, YOLO-FLNet achieved a 0.3% mAP@0.5 improvement, reduced parameter size by 52.9%, and increased inference speed by 30.2%. These characteristics make it valuable for person detection in engineering domains, providing theoretical guidance for lightweight models in edge computing.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.330015\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.330015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Lightweight Real-Time System for Object Detection in Enterprise Information Systems for Frequency-Based Feature Separation
In the domain of target detection in mobile and embedded devices, neural network model inference speed is a crucial metric. This paper introduces YOLO-FLNet, a lightweight algorithm for detecting people in open scenes. The model utilizes the DFEM structure to capture and process high-frequency and low-frequency information in the feature map. Additionally, the VoV-DFEM structure, based on the concept of one-shot aggregation, enhances feature aggregation from different scales and frequencies in the backbone network. To validate its performance, experiments were conducted using publicly available datasets on a computer with dedicated GPUs. As a result, compared to YOLOv7-tiny, YOLO-FLNet achieved a 0.3% mAP@0.5 improvement, reduced parameter size by 52.9%, and increased inference speed by 30.2%. These characteristics make it valuable for person detection in engineering domains, providing theoretical guidance for lightweight models in edge computing.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.