两种关键中间体的改进合成工艺及其在lifitgrast合成中的应用

Gang-Long Jiang, Xin-Kun Wang, Xia Xiao, Yu Liu
{"title":"两种关键中间体的改进合成工艺及其在lifitgrast合成中的应用","authors":"Gang-Long Jiang, Xin-Kun Wang, Xia Xiao, Yu Liu","doi":"10.1055/s-0043-1771035","DOIUrl":null,"url":null,"abstract":"Benzofuran-6-carboxylic acid 2 and 2-(tert-butoxycarbonyl)-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid 21 are two key intermediates for the synthesis of lifitegrast (1). The present study aimed to obtain lifitegrast from the key intermediates of 2 and 5,7-dichloro-2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (31), which had the same core structure as 21. In this study, the synthetic routes of 2 and 31 were explored. 2 and 31 were synthesized from 4-bromo-2-hydroxybenzaldehyde (25) and 2-(2,4-dichlorophenyl)ethan-1-amine (28), with the yields of 78 and 80%, respectively. The route avoided the harsh reaction conditions of generating 2 in a previous study and could more efficiently achieve the core structure of 5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. Besides, the hydrolysis reaction conditions of preparing lifitegrast were also optimized. In this work, lifitegrast was obtained from 2 and 31 with high purity (>99.9%) and an overall yield of 79%, which was higher than the reported yield of 66%.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"28 1","pages":"e153 - e160"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Synthetic Process of Two Key Intermediates and Their Application in the Synthesis of Lifitegrast\",\"authors\":\"Gang-Long Jiang, Xin-Kun Wang, Xia Xiao, Yu Liu\",\"doi\":\"10.1055/s-0043-1771035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benzofuran-6-carboxylic acid 2 and 2-(tert-butoxycarbonyl)-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid 21 are two key intermediates for the synthesis of lifitegrast (1). The present study aimed to obtain lifitegrast from the key intermediates of 2 and 5,7-dichloro-2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (31), which had the same core structure as 21. In this study, the synthetic routes of 2 and 31 were explored. 2 and 31 were synthesized from 4-bromo-2-hydroxybenzaldehyde (25) and 2-(2,4-dichlorophenyl)ethan-1-amine (28), with the yields of 78 and 80%, respectively. The route avoided the harsh reaction conditions of generating 2 in a previous study and could more efficiently achieve the core structure of 5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. Besides, the hydrolysis reaction conditions of preparing lifitegrast were also optimized. In this work, lifitegrast was obtained from 2 and 31 with high purity (>99.9%) and an overall yield of 79%, which was higher than the reported yield of 66%.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"28 1\",\"pages\":\"e153 - e160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0043-1771035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1771035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

苯并呋喃-6-羧酸2和2-(叔丁基羰基)-5,7-二氯-1,2,3,4-四氢异喹啉-6-羧酸21是合成lifitgrast的两个关键中间体(1)。本研究旨在从与21具有相同核心结构的2和5,7-二氯-2-(2,2,2-三氟乙酰基)-1,2,3,4-四氢异喹啉-6-羧酸(31)的关键中间体中得到lifitgrast。本研究探索了2和31的合成路线。以4-溴-2-羟基苯甲醛(25)和2-(2,4-二氯苯基)乙二胺(28)为原料合成了2和31,产率分别为78%和80%。该路线避免了前人研究中生成2的苛刻反应条件,可以更高效地获得5,7-二氯-1,2,3,4-四氢异喹啉-6-羧酸的核心结构。此外,还对制备lifitgrast的水解反应条件进行了优化。在本研究中,从2号和31号中获得了高纯度(>99.9%)的lifitegrast,总收率为79%,高于报道的66%的收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Synthetic Process of Two Key Intermediates and Their Application in the Synthesis of Lifitegrast
Benzofuran-6-carboxylic acid 2 and 2-(tert-butoxycarbonyl)-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid 21 are two key intermediates for the synthesis of lifitegrast (1). The present study aimed to obtain lifitegrast from the key intermediates of 2 and 5,7-dichloro-2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (31), which had the same core structure as 21. In this study, the synthetic routes of 2 and 31 were explored. 2 and 31 were synthesized from 4-bromo-2-hydroxybenzaldehyde (25) and 2-(2,4-dichlorophenyl)ethan-1-amine (28), with the yields of 78 and 80%, respectively. The route avoided the harsh reaction conditions of generating 2 in a previous study and could more efficiently achieve the core structure of 5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. Besides, the hydrolysis reaction conditions of preparing lifitegrast were also optimized. In this work, lifitegrast was obtained from 2 and 31 with high purity (>99.9%) and an overall yield of 79%, which was higher than the reported yield of 66%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1