{"title":"两种关键中间体的改进合成工艺及其在lifitgrast合成中的应用","authors":"Gang-Long Jiang, Xin-Kun Wang, Xia Xiao, Yu Liu","doi":"10.1055/s-0043-1771035","DOIUrl":null,"url":null,"abstract":"Benzofuran-6-carboxylic acid 2 and 2-(tert-butoxycarbonyl)-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid 21 are two key intermediates for the synthesis of lifitegrast (1). The present study aimed to obtain lifitegrast from the key intermediates of 2 and 5,7-dichloro-2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (31), which had the same core structure as 21. In this study, the synthetic routes of 2 and 31 were explored. 2 and 31 were synthesized from 4-bromo-2-hydroxybenzaldehyde (25) and 2-(2,4-dichlorophenyl)ethan-1-amine (28), with the yields of 78 and 80%, respectively. The route avoided the harsh reaction conditions of generating 2 in a previous study and could more efficiently achieve the core structure of 5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. Besides, the hydrolysis reaction conditions of preparing lifitegrast were also optimized. In this work, lifitegrast was obtained from 2 and 31 with high purity (>99.9%) and an overall yield of 79%, which was higher than the reported yield of 66%.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"28 1","pages":"e153 - e160"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Synthetic Process of Two Key Intermediates and Their Application in the Synthesis of Lifitegrast\",\"authors\":\"Gang-Long Jiang, Xin-Kun Wang, Xia Xiao, Yu Liu\",\"doi\":\"10.1055/s-0043-1771035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benzofuran-6-carboxylic acid 2 and 2-(tert-butoxycarbonyl)-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid 21 are two key intermediates for the synthesis of lifitegrast (1). The present study aimed to obtain lifitegrast from the key intermediates of 2 and 5,7-dichloro-2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (31), which had the same core structure as 21. In this study, the synthetic routes of 2 and 31 were explored. 2 and 31 were synthesized from 4-bromo-2-hydroxybenzaldehyde (25) and 2-(2,4-dichlorophenyl)ethan-1-amine (28), with the yields of 78 and 80%, respectively. The route avoided the harsh reaction conditions of generating 2 in a previous study and could more efficiently achieve the core structure of 5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. Besides, the hydrolysis reaction conditions of preparing lifitegrast were also optimized. In this work, lifitegrast was obtained from 2 and 31 with high purity (>99.9%) and an overall yield of 79%, which was higher than the reported yield of 66%.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"28 1\",\"pages\":\"e153 - e160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0043-1771035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1771035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Synthetic Process of Two Key Intermediates and Their Application in the Synthesis of Lifitegrast
Benzofuran-6-carboxylic acid 2 and 2-(tert-butoxycarbonyl)-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid 21 are two key intermediates for the synthesis of lifitegrast (1). The present study aimed to obtain lifitegrast from the key intermediates of 2 and 5,7-dichloro-2-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (31), which had the same core structure as 21. In this study, the synthetic routes of 2 and 31 were explored. 2 and 31 were synthesized from 4-bromo-2-hydroxybenzaldehyde (25) and 2-(2,4-dichlorophenyl)ethan-1-amine (28), with the yields of 78 and 80%, respectively. The route avoided the harsh reaction conditions of generating 2 in a previous study and could more efficiently achieve the core structure of 5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. Besides, the hydrolysis reaction conditions of preparing lifitegrast were also optimized. In this work, lifitegrast was obtained from 2 and 31 with high purity (>99.9%) and an overall yield of 79%, which was higher than the reported yield of 66%.