Aravindakshan Parthasarathy, Jesyin Lai, Edward L Bartlett
{"title":"利用包络跟随反应评估处理同步振幅调制声音时与年龄有关的变化","authors":"Aravindakshan Parthasarathy, Jesyin Lai, Edward L Bartlett","doi":"10.1007/s10162-016-0554-z","DOIUrl":null,"url":null,"abstract":"<p><p>Listening conditions in the real world involve segregating the stimuli of interest from competing auditory stimuli that differ in their sound level and spectral content. It is in these conditions of complex spectro-temporal processing that listeners with age-related hearing loss experience the most difficulties. Envelope following responses (EFRs) provide objective neurophysiological measures of auditory processing. EFRs were obtained to two simultaneous sinusoidally amplitude modulated (sAM) tones from young and aged Fischer-344 rats. One was held at a fixed suprathreshold sound level (sAM1FL) while the second varied in sound level (sAM2VL) and carrier frequency. EFR amplitudes to sAM1FL in the young decreased with signal-to-noise ratio (SNR), and this reduction was more pronounced when the sAM2VL carrier frequency was spectrally separated from sAM1FL. Aged animals showed similar trends, while having decreased overall response amplitudes compared to the young. These results were replicated using an established computational model of the auditory nerve. The trends observed in the EFRs were shown to be due to the contributions of the low-frequency tails of high-frequency neurons, rather than neurons tuned to the sAM1FL carrier frequency. Modeling changes in threshold and neural loss reproduced some of the changes seen with age, but accuracy improved when combined with an additional decrease representing synaptic loss of auditory nerve neurons. Sound segregation in this case derives primarily from peripheral processing, regardless of age. Contributions by more central neural mechanisms are likely to occur only at low SNRs. </p>","PeriodicalId":17236,"journal":{"name":"Journal of the Association for Research in Otolaryngology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Age-Related Changes in Processing Simultaneous Amplitude Modulated Sounds Assessed Using Envelope Following Responses.\",\"authors\":\"Aravindakshan Parthasarathy, Jesyin Lai, Edward L Bartlett\",\"doi\":\"10.1007/s10162-016-0554-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Listening conditions in the real world involve segregating the stimuli of interest from competing auditory stimuli that differ in their sound level and spectral content. It is in these conditions of complex spectro-temporal processing that listeners with age-related hearing loss experience the most difficulties. Envelope following responses (EFRs) provide objective neurophysiological measures of auditory processing. EFRs were obtained to two simultaneous sinusoidally amplitude modulated (sAM) tones from young and aged Fischer-344 rats. One was held at a fixed suprathreshold sound level (sAM1FL) while the second varied in sound level (sAM2VL) and carrier frequency. EFR amplitudes to sAM1FL in the young decreased with signal-to-noise ratio (SNR), and this reduction was more pronounced when the sAM2VL carrier frequency was spectrally separated from sAM1FL. Aged animals showed similar trends, while having decreased overall response amplitudes compared to the young. These results were replicated using an established computational model of the auditory nerve. The trends observed in the EFRs were shown to be due to the contributions of the low-frequency tails of high-frequency neurons, rather than neurons tuned to the sAM1FL carrier frequency. Modeling changes in threshold and neural loss reproduced some of the changes seen with age, but accuracy improved when combined with an additional decrease representing synaptic loss of auditory nerve neurons. Sound segregation in this case derives primarily from peripheral processing, regardless of age. Contributions by more central neural mechanisms are likely to occur only at low SNRs. </p>\",\"PeriodicalId\":17236,\"journal\":{\"name\":\"Journal of the Association for Research in Otolaryngology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-016-0554-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association for Research in Otolaryngology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10162-016-0554-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/2/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Age-Related Changes in Processing Simultaneous Amplitude Modulated Sounds Assessed Using Envelope Following Responses.
Listening conditions in the real world involve segregating the stimuli of interest from competing auditory stimuli that differ in their sound level and spectral content. It is in these conditions of complex spectro-temporal processing that listeners with age-related hearing loss experience the most difficulties. Envelope following responses (EFRs) provide objective neurophysiological measures of auditory processing. EFRs were obtained to two simultaneous sinusoidally amplitude modulated (sAM) tones from young and aged Fischer-344 rats. One was held at a fixed suprathreshold sound level (sAM1FL) while the second varied in sound level (sAM2VL) and carrier frequency. EFR amplitudes to sAM1FL in the young decreased with signal-to-noise ratio (SNR), and this reduction was more pronounced when the sAM2VL carrier frequency was spectrally separated from sAM1FL. Aged animals showed similar trends, while having decreased overall response amplitudes compared to the young. These results were replicated using an established computational model of the auditory nerve. The trends observed in the EFRs were shown to be due to the contributions of the low-frequency tails of high-frequency neurons, rather than neurons tuned to the sAM1FL carrier frequency. Modeling changes in threshold and neural loss reproduced some of the changes seen with age, but accuracy improved when combined with an additional decrease representing synaptic loss of auditory nerve neurons. Sound segregation in this case derives primarily from peripheral processing, regardless of age. Contributions by more central neural mechanisms are likely to occur only at low SNRs.