H. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet
{"title":"纳米和微表面处理增强微通道内流动沸腾换热","authors":"H. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet","doi":"10.1051/MECA/2011111","DOIUrl":null,"url":null,"abstract":"This paper investigates the flow boiling heat transfer in microchannels with the aim of developing compact cooling systems which can be adapted to miniaturized power components. Nano- and micro-surface treatments were used as innovative techniques to improve the heat transfer performance as well as to delay the intermittent dryout. It was observed that the micro-structured surfaces show significant enhancements (up to 85%) in heat transfer compared to the smooth surfaces. Especially, using the highly-wetted structured surface, the intermittent dryout is improved.","PeriodicalId":49847,"journal":{"name":"Mecanique & Industries","volume":"10 1","pages":"151-155"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhancement of flow boiling heat transfer in microchannels by nano- and micro-surface treatments\",\"authors\":\"H. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet\",\"doi\":\"10.1051/MECA/2011111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the flow boiling heat transfer in microchannels with the aim of developing compact cooling systems which can be adapted to miniaturized power components. Nano- and micro-surface treatments were used as innovative techniques to improve the heat transfer performance as well as to delay the intermittent dryout. It was observed that the micro-structured surfaces show significant enhancements (up to 85%) in heat transfer compared to the smooth surfaces. Especially, using the highly-wetted structured surface, the intermittent dryout is improved.\",\"PeriodicalId\":49847,\"journal\":{\"name\":\"Mecanique & Industries\",\"volume\":\"10 1\",\"pages\":\"151-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mecanique & Industries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MECA/2011111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mecanique & Industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MECA/2011111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancement of flow boiling heat transfer in microchannels by nano- and micro-surface treatments
This paper investigates the flow boiling heat transfer in microchannels with the aim of developing compact cooling systems which can be adapted to miniaturized power components. Nano- and micro-surface treatments were used as innovative techniques to improve the heat transfer performance as well as to delay the intermittent dryout. It was observed that the micro-structured surfaces show significant enhancements (up to 85%) in heat transfer compared to the smooth surfaces. Especially, using the highly-wetted structured surface, the intermittent dryout is improved.