{"title":"基于脑电信号时空特征的抑郁预测算法","authors":"Wei Liu, Kebin Jia, Zhuozheng Wang, Zhuo Ma","doi":"10.3390/brainsci12050630","DOIUrl":null,"url":null,"abstract":"<p><p>Depression has gradually become the most common mental disorder in the world. The accuracy of its diagnosis may be affected by many factors, while the primary diagnosis seems to be difficult to define. Finding a way to identify depression by satisfying both objective and effective conditions is an urgent issue. In this paper, a strategy for predicting depression based on spatiotemporal features is proposed, and is expected to be used in the auxiliary diagnosis of depression. Firstly, electroencephalogram (EEG) signals were denoised through the filter to obtain the power spectra of the three corresponding frequency ranges, Theta, Alpha and Beta. Using orthogonal projection, the spatial positions of the electrodes were mapped to the brainpower spectrum, thereby obtaining three brain maps with spatial information. Then, the three brain maps were superimposed on a new brain map with frequency domain and spatial characteristics. A Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) were applied to extract the sequential feature. The proposed strategy was validated with a public EEG dataset, achieving an accuracy of 89.63% and an accuracy of 88.56% with the private dataset. The network had less complexity with only six layers. The results show that our strategy is credible, less complex and useful in predicting depression using EEG signals.</p>","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":"20 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139403/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal.\",\"authors\":\"Wei Liu, Kebin Jia, Zhuozheng Wang, Zhuo Ma\",\"doi\":\"10.3390/brainsci12050630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Depression has gradually become the most common mental disorder in the world. The accuracy of its diagnosis may be affected by many factors, while the primary diagnosis seems to be difficult to define. Finding a way to identify depression by satisfying both objective and effective conditions is an urgent issue. In this paper, a strategy for predicting depression based on spatiotemporal features is proposed, and is expected to be used in the auxiliary diagnosis of depression. Firstly, electroencephalogram (EEG) signals were denoised through the filter to obtain the power spectra of the three corresponding frequency ranges, Theta, Alpha and Beta. Using orthogonal projection, the spatial positions of the electrodes were mapped to the brainpower spectrum, thereby obtaining three brain maps with spatial information. Then, the three brain maps were superimposed on a new brain map with frequency domain and spatial characteristics. A Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) were applied to extract the sequential feature. The proposed strategy was validated with a public EEG dataset, achieving an accuracy of 89.63% and an accuracy of 88.56% with the private dataset. The network had less complexity with only six layers. The results show that our strategy is credible, less complex and useful in predicting depression using EEG signals.</p>\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci12050630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci12050630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal.
Depression has gradually become the most common mental disorder in the world. The accuracy of its diagnosis may be affected by many factors, while the primary diagnosis seems to be difficult to define. Finding a way to identify depression by satisfying both objective and effective conditions is an urgent issue. In this paper, a strategy for predicting depression based on spatiotemporal features is proposed, and is expected to be used in the auxiliary diagnosis of depression. Firstly, electroencephalogram (EEG) signals were denoised through the filter to obtain the power spectra of the three corresponding frequency ranges, Theta, Alpha and Beta. Using orthogonal projection, the spatial positions of the electrodes were mapped to the brainpower spectrum, thereby obtaining three brain maps with spatial information. Then, the three brain maps were superimposed on a new brain map with frequency domain and spatial characteristics. A Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) were applied to extract the sequential feature. The proposed strategy was validated with a public EEG dataset, achieving an accuracy of 89.63% and an accuracy of 88.56% with the private dataset. The network had less complexity with only six layers. The results show that our strategy is credible, less complex and useful in predicting depression using EEG signals.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining