Weichao Wang, Shi Feng, Wei Gao, Daling Wang, Yifei Zhang
{"title":"一种可控制神经反应生成的线索自适应解码器","authors":"Weichao Wang, Shi Feng, Wei Gao, Daling Wang, Yifei Zhang","doi":"10.1145/3366423.3380008","DOIUrl":null,"url":null,"abstract":"In open-domain dialogue systems, dialogue cues such as emotion, persona, and emoji can be incorporated into conversation models for strengthening the semantic relevance of generated responses. Existing neural response generation models either incorporate dialogue cue into decoder’s initial state or embed the cue indiscriminately into the state of every generated word, which may cause the gradients of the embedded cue to vanish or disturb the semantic relevance of generated words during back propagation. In this paper, we propose a Cue Adaptive Decoder (CueAD) that aims to dynamically determine the involvement of a cue at each generation step in the decoding. For this purpose, we extend the Gated Recurrent Unit (GRU) network with an adaptive cue representation for facilitating cue incorporation, in which an adaptive gating unit is utilized to decide when to incorporate cue information so that the cue can provide useful clues for enhancing the semantic relevance of the generated words. Experimental results show that CueAD outperforms state-of-the-art baselines with large margins.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Cue Adaptive Decoder for Controllable Neural Response Generation\",\"authors\":\"Weichao Wang, Shi Feng, Wei Gao, Daling Wang, Yifei Zhang\",\"doi\":\"10.1145/3366423.3380008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In open-domain dialogue systems, dialogue cues such as emotion, persona, and emoji can be incorporated into conversation models for strengthening the semantic relevance of generated responses. Existing neural response generation models either incorporate dialogue cue into decoder’s initial state or embed the cue indiscriminately into the state of every generated word, which may cause the gradients of the embedded cue to vanish or disturb the semantic relevance of generated words during back propagation. In this paper, we propose a Cue Adaptive Decoder (CueAD) that aims to dynamically determine the involvement of a cue at each generation step in the decoding. For this purpose, we extend the Gated Recurrent Unit (GRU) network with an adaptive cue representation for facilitating cue incorporation, in which an adaptive gating unit is utilized to decide when to incorporate cue information so that the cue can provide useful clues for enhancing the semantic relevance of the generated words. Experimental results show that CueAD outperforms state-of-the-art baselines with large margins.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Cue Adaptive Decoder for Controllable Neural Response Generation
In open-domain dialogue systems, dialogue cues such as emotion, persona, and emoji can be incorporated into conversation models for strengthening the semantic relevance of generated responses. Existing neural response generation models either incorporate dialogue cue into decoder’s initial state or embed the cue indiscriminately into the state of every generated word, which may cause the gradients of the embedded cue to vanish or disturb the semantic relevance of generated words during back propagation. In this paper, we propose a Cue Adaptive Decoder (CueAD) that aims to dynamically determine the involvement of a cue at each generation step in the decoding. For this purpose, we extend the Gated Recurrent Unit (GRU) network with an adaptive cue representation for facilitating cue incorporation, in which an adaptive gating unit is utilized to decide when to incorporate cue information so that the cue can provide useful clues for enhancing the semantic relevance of the generated words. Experimental results show that CueAD outperforms state-of-the-art baselines with large margins.