Iwasokun Gabriel Babatunde, Ayowole Oluwatayo Idowu, B. Kuboye
{"title":"候选评定与选择的模糊化技术","authors":"Iwasokun Gabriel Babatunde, Ayowole Oluwatayo Idowu, B. Kuboye","doi":"10.4018/ijdsst.303944","DOIUrl":null,"url":null,"abstract":"The traditional ways of candidate selection and recruitment are prone to subjectivity, imprecision and vagueness. With a view to achieving objective and precise selection and recruitment while keeping up with technological improvement and changes, this paper discusses a fuzzification-based technique for candidate rating and selection. The technique comprises a fuzzy logic component that is an extension of Boolean logic and used for establishing accurate selection process and precise solutions to multi-variable problems. There is a knowledge base component which forms the database of multi-level information and rule base which composes a set of if-then statements for decision making. Its inference engine applies a pre-defined procedure on input from the rule base and fuzzy logic interfaces for final recommendations. The proposed methodology performs pre-defined procedures that are based on some input sets which stores multi-level information derived from several pre-specified scores. Results from the implementation of the proposed technique established its practical function.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"21 1","pages":"1-23"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzification Technique for Candidate Rating and Selection\",\"authors\":\"Iwasokun Gabriel Babatunde, Ayowole Oluwatayo Idowu, B. Kuboye\",\"doi\":\"10.4018/ijdsst.303944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional ways of candidate selection and recruitment are prone to subjectivity, imprecision and vagueness. With a view to achieving objective and precise selection and recruitment while keeping up with technological improvement and changes, this paper discusses a fuzzification-based technique for candidate rating and selection. The technique comprises a fuzzy logic component that is an extension of Boolean logic and used for establishing accurate selection process and precise solutions to multi-variable problems. There is a knowledge base component which forms the database of multi-level information and rule base which composes a set of if-then statements for decision making. Its inference engine applies a pre-defined procedure on input from the rule base and fuzzy logic interfaces for final recommendations. The proposed methodology performs pre-defined procedures that are based on some input sets which stores multi-level information derived from several pre-specified scores. Results from the implementation of the proposed technique established its practical function.\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":\"21 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.303944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.303944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fuzzification Technique for Candidate Rating and Selection
The traditional ways of candidate selection and recruitment are prone to subjectivity, imprecision and vagueness. With a view to achieving objective and precise selection and recruitment while keeping up with technological improvement and changes, this paper discusses a fuzzification-based technique for candidate rating and selection. The technique comprises a fuzzy logic component that is an extension of Boolean logic and used for establishing accurate selection process and precise solutions to multi-variable problems. There is a knowledge base component which forms the database of multi-level information and rule base which composes a set of if-then statements for decision making. Its inference engine applies a pre-defined procedure on input from the rule base and fuzzy logic interfaces for final recommendations. The proposed methodology performs pre-defined procedures that are based on some input sets which stores multi-level information derived from several pre-specified scores. Results from the implementation of the proposed technique established its practical function.