海报:实时pb数据流的高速决策

W. Badgett, K. Biery, C. Green, J. Kowalkowski, K. Maeshima, M. Paterno, R. Roser
{"title":"海报:实时pb数据流的高速决策","authors":"W. Badgett, K. Biery, C. Green, J. Kowalkowski, K. Maeshima, M. Paterno, R. Roser","doi":"10.1109/SC.Companion.2012.218","DOIUrl":null,"url":null,"abstract":"High Energy Physics has a long history of coping with cutting-edge data rates in its efforts to extract meaning from experimental data. The quantity of data from planned future experiments that must be analyzed practically in real-time to enable efficient filtering and storage of the scientifically interesting data has driven the development of sophisticated techniques which leverage technologies such as MPI, OpenMP and Intel TBB. We show the evolution of data collection, triggering and filtering from the 1990s with TeVatron experiments into the future of Intensity Frontier and Cosmic Frontier experiments and show how the requirements of upcoming experiments lead us to the development of high-performance streaming triggerless DAQ systems.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"22 1","pages":"1404-1404"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: High-Speed Decision Making on Live Petabyte Data Streams\",\"authors\":\"W. Badgett, K. Biery, C. Green, J. Kowalkowski, K. Maeshima, M. Paterno, R. Roser\",\"doi\":\"10.1109/SC.Companion.2012.218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High Energy Physics has a long history of coping with cutting-edge data rates in its efforts to extract meaning from experimental data. The quantity of data from planned future experiments that must be analyzed practically in real-time to enable efficient filtering and storage of the scientifically interesting data has driven the development of sophisticated techniques which leverage technologies such as MPI, OpenMP and Intel TBB. We show the evolution of data collection, triggering and filtering from the 1990s with TeVatron experiments into the future of Intensity Frontier and Cosmic Frontier experiments and show how the requirements of upcoming experiments lead us to the development of high-performance streaming triggerless DAQ systems.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"22 1\",\"pages\":\"1404-1404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高能物理学在从实验数据中提取意义的努力中,有着应对尖端数据速率的悠久历史。来自计划中的未来实验的数据量必须进行实际的实时分析,以便有效地过滤和存储科学上有趣的数据,这推动了利用MPI、OpenMP和英特尔TBB等技术的复杂技术的发展。我们展示了从20世纪90年代的TeVatron实验到强度前沿和宇宙前沿实验的未来的数据收集,触发和过滤的演变,并展示了即将到来的实验的要求如何引导我们开发高性能流无触发DAQ系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster: High-Speed Decision Making on Live Petabyte Data Streams
High Energy Physics has a long history of coping with cutting-edge data rates in its efforts to extract meaning from experimental data. The quantity of data from planned future experiments that must be analyzed practically in real-time to enable efficient filtering and storage of the scientifically interesting data has driven the development of sophisticated techniques which leverage technologies such as MPI, OpenMP and Intel TBB. We show the evolution of data collection, triggering and filtering from the 1990s with TeVatron experiments into the future of Intensity Frontier and Cosmic Frontier experiments and show how the requirements of upcoming experiments lead us to the development of high-performance streaming triggerless DAQ systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1