基于ZigBee无线网络和神经网络的儿童跟踪系统

Q4 Biochemistry, Genetics and Molecular Biology Journal of Biomolecular Techniques Pub Date : 2023-04-07 DOI:10.51173/jt.v5i1.838
{"title":"基于ZigBee无线网络和神经网络的儿童跟踪系统","authors":"","doi":"10.51173/jt.v5i1.838","DOIUrl":null,"url":null,"abstract":"The safety of children is one of the fundamental concerns of parents. Recently, child kidnapping has increased by a large percentage, some children have been found, and some children have not found yet. This paper proposes an indoor localization system based on ZigBee wireless sensor network (WSN) and Backpropagation Artificial Neural Network (BP-ANN) to locate the child in an indoor environment. Several ANN topologies were investigated to select the best one with minimum tracking or localization error. The Received Signal Strength Indicator (RSSI) was collected from four ZigBee XBee S2C anchor nodes by the mobile node carried by the child in an indoor area of 32m × 32m. The RSSI was collected from 127 test points inside the tested area. The measured RSSI was used to train, test, and validate the performance of BP-ANN to determine the two dimensions (2D) of the target child’s location. Different topologies of ANN have been examined for training, testing, and validation which are 5-5, 10-10, 15-15, and 20-20 neurons in the hidden layer. The findings indicate that the 20-20 ANN topology can achieve higher accuracy than other topologies. Additionally, 20-20 topology localization errors were 1.0, 1.157, and 1.356 m for training, testing, and validating ANN performance.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Children Tracking System Based on ZigBee Wireless Network and Neural Network\",\"authors\":\"\",\"doi\":\"10.51173/jt.v5i1.838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The safety of children is one of the fundamental concerns of parents. Recently, child kidnapping has increased by a large percentage, some children have been found, and some children have not found yet. This paper proposes an indoor localization system based on ZigBee wireless sensor network (WSN) and Backpropagation Artificial Neural Network (BP-ANN) to locate the child in an indoor environment. Several ANN topologies were investigated to select the best one with minimum tracking or localization error. The Received Signal Strength Indicator (RSSI) was collected from four ZigBee XBee S2C anchor nodes by the mobile node carried by the child in an indoor area of 32m × 32m. The RSSI was collected from 127 test points inside the tested area. The measured RSSI was used to train, test, and validate the performance of BP-ANN to determine the two dimensions (2D) of the target child’s location. Different topologies of ANN have been examined for training, testing, and validation which are 5-5, 10-10, 15-15, and 20-20 neurons in the hidden layer. The findings indicate that the 20-20 ANN topology can achieve higher accuracy than other topologies. Additionally, 20-20 topology localization errors were 1.0, 1.157, and 1.356 m for training, testing, and validating ANN performance.\",\"PeriodicalId\":39617,\"journal\":{\"name\":\"Journal of Biomolecular Techniques\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51173/jt.v5i1.838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i1.838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

摘要

儿童的安全是家长最关心的问题之一。最近,拐卖儿童的案件有了很大的增长,有的孩子找到了,有的孩子还没有找到。本文提出了一种基于ZigBee无线传感器网络(WSN)和反向传播人工神经网络(BP-ANN)的室内定位系统,用于儿童在室内环境中的定位。研究了几种人工神经网络拓扑结构,以选择跟踪或定位误差最小的拓扑结构。RSSI (Received Signal Strength Indicator)由儿童携带的移动节点在室内32m × 32m范围内采集4个ZigBee XBee S2C锚节点。RSSI采集于测试区内127个测试点。测量的RSSI用于训练、测试和验证BP-ANN的性能,以确定目标儿童位置的二维(2D)。人工神经网络的不同拓扑已经被用于训练、测试和验证,它们是隐藏层中的5-5、10-10、15-15和20-20个神经元。结果表明,20-20人工神经网络拓扑比其他拓扑具有更高的准确率。此外,用于训练、测试和验证ANN性能的20-20拓扑定位误差分别为1.0、1.157和1.356 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Children Tracking System Based on ZigBee Wireless Network and Neural Network
The safety of children is one of the fundamental concerns of parents. Recently, child kidnapping has increased by a large percentage, some children have been found, and some children have not found yet. This paper proposes an indoor localization system based on ZigBee wireless sensor network (WSN) and Backpropagation Artificial Neural Network (BP-ANN) to locate the child in an indoor environment. Several ANN topologies were investigated to select the best one with minimum tracking or localization error. The Received Signal Strength Indicator (RSSI) was collected from four ZigBee XBee S2C anchor nodes by the mobile node carried by the child in an indoor area of 32m × 32m. The RSSI was collected from 127 test points inside the tested area. The measured RSSI was used to train, test, and validate the performance of BP-ANN to determine the two dimensions (2D) of the target child’s location. Different topologies of ANN have been examined for training, testing, and validation which are 5-5, 10-10, 15-15, and 20-20 neurons in the hidden layer. The findings indicate that the 20-20 ANN topology can achieve higher accuracy than other topologies. Additionally, 20-20 topology localization errors were 1.0, 1.157, and 1.356 m for training, testing, and validating ANN performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Techniques
Journal of Biomolecular Techniques Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
2.50
自引率
0.00%
发文量
9
期刊介绍: The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.
期刊最新文献
Effect of Different Polishing Systems on Surface Roughness of IPS Empress Ceramic Materials Evaluation of the Effect of Nano and Micro Hydroxyapatite Particles on the Impact Strength of Acrylic Resin: In Vitro Study The Effect of Recycled CAD/CAM PEEK Fibers on the Transverse Strength of Repaired Acrylic Resin Assessment of Vitamin D3 Level Among a Sample of Type 2 Diabetic Patients Attending Diabetes and Endocrinology Center in Al-Hilla City The Impact of Digital Transformation in Enhancing Operational Performance: An Applied Study in the Kirkuk Electricity Distribution Branch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1