{"title":"足部接触面有摩擦和无摩擦位置控制的比较","authors":"B. Rudolph, Ryder C. Winck","doi":"10.1115/dscc2019-9019","DOIUrl":null,"url":null,"abstract":"\n A foot interface may one day control a third arm to assist the hands with a difficult task, but the interface needs to be easy to use. Developing a good foot interface is challenging because of the need to provide support for the leg, allow the user to disengage with the interface without causing unwanted motion, and make it easy for the user to hold a set position. The addition of friction in the interface can enable the device to meet these goals without negatively affecting performance. Although teleoperation is a well explored area of research, relatively little research has been done that examines the effects of friction on the control interface. This paper presents an experiment in which two foot control interfaces are compared. One device uses friction and the other has no added friction, so there is little resistance to motion in any direction. The experiment uses a reaching task and a path-following task to compare the interfaces. The only statistically significant performance differences were that the friction interface reduced the time needed to stop at a target and reduced excess movement when stopping at a target. Also, subjects indicated a preference for the friction interface. The results show that friction can be added to a foot interface to support the device and user and provide some positive gains in performance.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Position Control With and Without Friction on a Foot Interface\",\"authors\":\"B. Rudolph, Ryder C. Winck\",\"doi\":\"10.1115/dscc2019-9019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A foot interface may one day control a third arm to assist the hands with a difficult task, but the interface needs to be easy to use. Developing a good foot interface is challenging because of the need to provide support for the leg, allow the user to disengage with the interface without causing unwanted motion, and make it easy for the user to hold a set position. The addition of friction in the interface can enable the device to meet these goals without negatively affecting performance. Although teleoperation is a well explored area of research, relatively little research has been done that examines the effects of friction on the control interface. This paper presents an experiment in which two foot control interfaces are compared. One device uses friction and the other has no added friction, so there is little resistance to motion in any direction. The experiment uses a reaching task and a path-following task to compare the interfaces. The only statistically significant performance differences were that the friction interface reduced the time needed to stop at a target and reduced excess movement when stopping at a target. Also, subjects indicated a preference for the friction interface. The results show that friction can be added to a foot interface to support the device and user and provide some positive gains in performance.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Comparison of Position Control With and Without Friction on a Foot Interface
A foot interface may one day control a third arm to assist the hands with a difficult task, but the interface needs to be easy to use. Developing a good foot interface is challenging because of the need to provide support for the leg, allow the user to disengage with the interface without causing unwanted motion, and make it easy for the user to hold a set position. The addition of friction in the interface can enable the device to meet these goals without negatively affecting performance. Although teleoperation is a well explored area of research, relatively little research has been done that examines the effects of friction on the control interface. This paper presents an experiment in which two foot control interfaces are compared. One device uses friction and the other has no added friction, so there is little resistance to motion in any direction. The experiment uses a reaching task and a path-following task to compare the interfaces. The only statistically significant performance differences were that the friction interface reduced the time needed to stop at a target and reduced excess movement when stopping at a target. Also, subjects indicated a preference for the friction interface. The results show that friction can be added to a foot interface to support the device and user and provide some positive gains in performance.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.