{"title":"随机结构开孔金属泡沫导热系数的影响因素","authors":"M. Saljooghi, A. Raisi, Amir Farahbakhsh","doi":"10.1051/meca/2020028","DOIUrl":null,"url":null,"abstract":"Effective thermal conductivity (ETC) is a considerable thermo-physical property in design, manufacturing, and usage of multifunctional equipment that benefit cellular structures such as open-cell metal foams. An accurate understanding of key parameters effecting on ETC is classified by: Analytical, Numerical and Experimental approaches. In this study, a comprehensive investigation based on mentioned approaches is presented and a comparison between various factors affecting ETC including porosity, pore size, temperature, pressure and shape factor is made. Porosity and pore size, as main morphological features of open-cell metal foams, indicate structural characterization of them. Increase of porosity and pore size resulted decrease of ETC. The temperature effects on ETC in case of temperatures lower than 250 °C is ignorable although for temperature higher than 500 °C with change of heat transfer mechanism temperature plays a primary role in determining ETC. Few studies have been made on pressure parameter that illustrated its effect on ETC is insignificant. Multiple manufacturing methods produce different topological structures so; the influence of shape factor on ETC requires more efforts to reach a better understanding. Finally, applicable techniques for measuring ETC are briefly discussed.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"28 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effective factors on thermal conductivity of stochastic structures open cell metal foams\",\"authors\":\"M. Saljooghi, A. Raisi, Amir Farahbakhsh\",\"doi\":\"10.1051/meca/2020028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective thermal conductivity (ETC) is a considerable thermo-physical property in design, manufacturing, and usage of multifunctional equipment that benefit cellular structures such as open-cell metal foams. An accurate understanding of key parameters effecting on ETC is classified by: Analytical, Numerical and Experimental approaches. In this study, a comprehensive investigation based on mentioned approaches is presented and a comparison between various factors affecting ETC including porosity, pore size, temperature, pressure and shape factor is made. Porosity and pore size, as main morphological features of open-cell metal foams, indicate structural characterization of them. Increase of porosity and pore size resulted decrease of ETC. The temperature effects on ETC in case of temperatures lower than 250 °C is ignorable although for temperature higher than 500 °C with change of heat transfer mechanism temperature plays a primary role in determining ETC. Few studies have been made on pressure parameter that illustrated its effect on ETC is insignificant. Multiple manufacturing methods produce different topological structures so; the influence of shape factor on ETC requires more efforts to reach a better understanding. Finally, applicable techniques for measuring ETC are briefly discussed.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2020028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2020028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effective factors on thermal conductivity of stochastic structures open cell metal foams
Effective thermal conductivity (ETC) is a considerable thermo-physical property in design, manufacturing, and usage of multifunctional equipment that benefit cellular structures such as open-cell metal foams. An accurate understanding of key parameters effecting on ETC is classified by: Analytical, Numerical and Experimental approaches. In this study, a comprehensive investigation based on mentioned approaches is presented and a comparison between various factors affecting ETC including porosity, pore size, temperature, pressure and shape factor is made. Porosity and pore size, as main morphological features of open-cell metal foams, indicate structural characterization of them. Increase of porosity and pore size resulted decrease of ETC. The temperature effects on ETC in case of temperatures lower than 250 °C is ignorable although for temperature higher than 500 °C with change of heat transfer mechanism temperature plays a primary role in determining ETC. Few studies have been made on pressure parameter that illustrated its effect on ETC is insignificant. Multiple manufacturing methods produce different topological structures so; the influence of shape factor on ETC requires more efforts to reach a better understanding. Finally, applicable techniques for measuring ETC are briefly discussed.
期刊介绍:
An International Journal on Mechanical Sciences and Engineering Applications
With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities.
Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.