{"title":"高电流密度下铁碳薄膜的各向异性晶粒生长","authors":"Thomas Brede, R. Kirchheim, C. Volkert","doi":"10.2139/ssrn.3427487","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the effect of direct electric current (DC) on grain growth in 100 nm thick iron-carbon films with carbon concentrations between 0.7 to 4.4 at%. The application of DC-current during annealing at 550 °C confirms the expected transport of carbon in the direction of the electric current and the unexpected formation of elongated, abnormally large carbide and ferrite grains along the current direction in the carbon-rich regions. The formation of elongated grains is explained by electromigration-induced carbon flux divergences that result from the carbide precipitates. This presents a possible scenario for controlling microstructure evolution in iron by using DC electric currents. Changes for alternating current (AC) pulses had been observed before.","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anisotropic Grain Growth in Iron-Carbon Films at High Electric Current Densities\",\"authors\":\"Thomas Brede, R. Kirchheim, C. Volkert\",\"doi\":\"10.2139/ssrn.3427487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the effect of direct electric current (DC) on grain growth in 100 nm thick iron-carbon films with carbon concentrations between 0.7 to 4.4 at%. The application of DC-current during annealing at 550 °C confirms the expected transport of carbon in the direction of the electric current and the unexpected formation of elongated, abnormally large carbide and ferrite grains along the current direction in the carbon-rich regions. The formation of elongated grains is explained by electromigration-induced carbon flux divergences that result from the carbide precipitates. This presents a possible scenario for controlling microstructure evolution in iron by using DC electric currents. Changes for alternating current (AC) pulses had been observed before.\",\"PeriodicalId\":18300,\"journal\":{\"name\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3427487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3427487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anisotropic Grain Growth in Iron-Carbon Films at High Electric Current Densities
Abstract We investigate the effect of direct electric current (DC) on grain growth in 100 nm thick iron-carbon films with carbon concentrations between 0.7 to 4.4 at%. The application of DC-current during annealing at 550 °C confirms the expected transport of carbon in the direction of the electric current and the unexpected formation of elongated, abnormally large carbide and ferrite grains along the current direction in the carbon-rich regions. The formation of elongated grains is explained by electromigration-induced carbon flux divergences that result from the carbide precipitates. This presents a possible scenario for controlling microstructure evolution in iron by using DC electric currents. Changes for alternating current (AC) pulses had been observed before.